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Abstract—Head gestures such as head nodding and shaking
play a prominent role in conversation, indicating active listening
and interest in a conversation. We aim to create a tool to assess
these physical conversational engagement cues in the context of a
mock job interview. We propose a hidden Markov model-based
architecture to locate and classify head nods and shakes from
head motion data in an online fashion. Based on the number,
velocity, and duration of the detected head gestures, we evaluate
the conversational engagement level using a linear regression
model. For the interview segments, high agreement was reached
between model scores and scores from human raters. We consider
this system as a path toward augmented reality and virtual
reality-based training that can broaden participation in careers
with competitive hiring scenarios.

Index Terms—Conversational engagement, job interview train-
ing, head motion, hidden Markov models.

I. INTRODUCTION

Technologies are needed that support assessment and learn-
ing of social communication skills. Cues that indicate active
listening include physical backchannels such as head nodding
and shaking, facial expressions, and oral backchannels, such
as saying “yeah” and “mm-hmm”. Conversational engagement
behavior is atypical in individuals with autism spectrum disor-
der (ASD). Studies report that 1 in 45 individuals is diagnosed
with ASD and only 15% are employed [1]. While many adults
with ASD have the cognitive skill to contribute substantially
to the workforce, social communication deficits prevent many
from obtaining employment.

Here we report on a system that uses an augmented reality
(AR) headset in the context of a social interaction (an inter-
view) to score conversational engagement from head motion
data. This approach would translate well to a virtual reality
(VR) headset in which the subject interacts with a virtual
interviewer. Virtual-based instruction has multiple advantages
from a training perspective as scenarios are repeatable, control-
lable and individualizable [2]. This is evidenced in social skills
research, including teaching interpersonal communication and
interview skills. In a review, Bonaccio and colleagues [3]
investigate nonverbal behavior in the workplace and identify
many “codes” of nonverbal behavior, from kinesics (commu-
nication through body movement), to haptics (communication
through touch), vocalics (communication through voice), and
proxemics (communication through physical space). In terms
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of interview specific skills, Arvey and Campion [4] found that
nonverbal behaviors like eye gaze and body movement signifi-
cantly influence how an interviewer perceives an interviewee’s
performance. These perceptions, then, bias the selection of
new employees.

Culture affects the meaning and execution of head gestures.
For example, the “head bobble” is common in South Asia,
notably in India [5]; this side-to-side head tilting is similar to
a head shake but is used in place of a nod to show compliance.
So, the models developed here for training conversational
engagement cues have obvious cultural limitations but are also
readily extensible through culturally-appropriate modules.

In this work, subjects wearing an AR headset respond to
a mock interviewer who follows a script. The conversational
engagement of the subjects is scored by three raters. The
head motion data is input to hidden Markov models (HMMs)
to detect head nods and shakes. The number, velocity and
duration of head gestures are used in a linear regression step to
predict the rater scores. The contributions of this paper are that
we build (1) an HMM structure for detection of head nodding
and shaking from inertial measurement unit (IMU) data in the
context of subjects who move freely during a conversation,
and (2) an evaluation model that scores physical backchannels
during a mock interview, and has high agreement with raters.

II. RELATED WORK

As we aim to develop a system to assist individuals in prac-
ticing and developing their conversational interaction skills,
we use IMU data from a head-mounted display (HMD) so
that the system could function with a virtual interviewer in a
VR setup or with an in-person coach in an AR setup. While
most past research on head gesture detection involves systems
that track a subject’s face via an external camera, some past
work uses depth sensors or HMDs to directly exploit 3D
head motion data. Yi et al. [6] built a similarity-based model
using gyroscope and accelerometer data from smart glasses.
Dynamic Time Warping (DTW) was used to recognize certain
head movements (e.g., nod/shake, tilting, circling). Aiming
to replace in-air hand commands of the Microsoft HoloLens
glasses with head gestures, Yan et al. [7] used DTW to
produce similarity scores between collected data sequences
and a target head gesture set. In [8], Google Cardboard VR
glasses were used to build a DTW-based system that detects
certain head movements based on IMU data. Zhao and Allison



[9] implemented a cascaded-HMM architecture to recognize
simple head movements from angular velocity data collected in
real time using the Oculus Rift DK2. The structure consisted of
nine discrete left-right HMMs. Severin [10] placed an inertial
sensor on an audio headset and tracked the IMU data (roll,
pitch, yaw) to detect 8 custom head movements.

Virtual training scenarios traditionally used 2D screens, e.g.,
Baur et al. [11] and Schouten et al. [12] collected nonverbal
social cues, including hand movements, head direction, and
facial expressions. The findings in these studies comport with
previous research like [3], [4] which significantly weights the
influence of nonverbal behaviors on interpersonal communica-
tion. The growing body of research on virtual based training
systems supports the superiority of HMD systems (encom-
passing both VR and AR) over 2D methods. The authors of
[13] used Google Glass to track autistic individuals’ head
movements to provide real-time feedback on gaze direction
and speaking volume during an interview. The guidance given
recognized that direct gaze might be uncomfortable, but some
situations demand it. In [14], researchers used the Microsoft
Kinect and physiological sensors, and measured college stu-
dents’ facial expressions and anxiety levels as measures of
interview performance. Both studies indicated that the AR
system can help certain groups cope with interview anxiety.

Aimed at young professionals, the system in [15] integrated
an HTC Vive Pro VR headset with chat-bots, facial recognition
software, physiological monitoring and emotion recognition
from text responses to evaluate a user’s interview performance.
In another study, Taupiac et al. [16] created role-playing
scenarios for managers and sales representatives, again using
the HTC Vive Pro. These studies do not use head motion data.

One population that faces challenges in these areas are those
on the autism spectrum. Didehbani et al. [17] taught social
skills to autistic children using a VR HMD and the online
platform SecondLife. Researchers measured emotion recogni-
tion, social attribution, and attention via tests before and after
VR-based training. It is interesting to note the researchers’ use
of traditional assessment tools for a nontraditional VR-based
training. Although such tools have validated construct validity,
using static attention assessments to evaluate the success of
this type of training could easily miss improved dynamic
attention allocation. An analysis system like the one proposed
in Section III could provide more objective measures of a
user’s attentiveness and dynamic attention allocation.

III. HEAD GESTURE CLASSIFICATION USING HMMS

Here we describe the data collection and model building for
head gesture classification. Section IV describes the process
for scoring conversational engagement.

A. Data Collection

The Magic Leap One AR headset produces (x, y, z) head
position data at 60 samples/s. Ten adult subjects (7 men, 3
women) wearing the headset were asked to respond to 72
questions with head nods or shakes accompanied by yes or
no oral answers. To elicit a range of behaviors, the questions

included short items (“Do you live on campus?”), longer ones
(“If my cousin was half of my age when I was 8, he will
be 36 when I am 40, is that true?”) and ones that might
prompt a smile or some puzzlement (“Russian astronauts
successfully landed on the Sun in 2018, is that correct?”).
Answer correctness was not a concern, and subjects were
asked to guess if needed. The headset recorded video, audio
and 3D head position data during each session.

The videos were manually annotated to locate the start and
end of each relevant head gesture. The longest, shortest, and
average head gesture sequences had 193 samples (3.22 s), 36
samples (600 ms), and 95 samples (1.58 s). For online vali-
dation, we separated the video sections corresponding to the
last 8 gestures. Of the 720 labeled gesture sequences, 82 were
removed in a data cleaning step because they corresponded
to cases where (a) the subject verbally answered but forgot
to execute a head motion, (b) the gesture resembled a “head
bobble” in which the motion was clearly similar to a head
shake but was associated with an affirmative answer, and (c)
there was a large body movement, as in cases of distraction.
After data cleaning, we were left with 560 training gesture
sequences (302 nods, 258 shakes) and 78 validation gesture
sequences. We also extracted 284 non-gesture sequences from
the same data; consisting of slight rotations in various direc-
tions as well as the idle state, this set was used as the negative
or “neither” class while training.

B. System Architecture

The system begins with an HMM structure (Fig. 1) contain-
ing three parallel HMMs; Ψ1 and Ψ−1 are trained to detect
head nods and shakes, and Ψ0 aims to detect everything else.
In the Magic Leap 3D data, x is the horizontal left-right axis,
y is the vertical axis, and z is the horizontal forward-backward
axis. The HMM inputs are x and y velocity values, that is the
position changes in x and y between consecutive samples (z
components were discarded because they were found in the
validation step to provide no benefit). In Fig. 1, Ψ1, Ψ0 and
Ψ−1 are all left-right HMMs. The system processes sequences
of x and y velocity values in overlapping windows. The HMM
structure involves a hyperparameter set consisting of {M1,
N1, M0, N0, M−1, N−1, wsize, ssize}, where Mi and Ni

are the numbers of observation symbols and hidden states in
HMM i, and wsize and ssize are the window size and step
size of the sliding window. The velocity values go through
separate quantization in each HMM since the numbers of
clusters (Mi) might be different. The quantization discretizes
the raw velocities using the centroids obtained during training,
and the minimum distance classifier. After obtaining a discrete
observation sequence (O), the Forward algorithm calculates the
related log-likelihoods (l(O | Ψi)). The class of the HMM that
produces the highest log-likelihood which is also greater than
the associated minimum training log-likelihood determines the
head movement type in that window. If there is a tie between
two log-likelihoods, or the maximum log-likelihood is not
greater the related minimum training log-likelihood, the model
classifies a window as “neither”.



Fig. 1 HMM Structure: VQ stands for vector quantization. A, B, C are the log-likelihoods from the HMMs for the Nod, Shake, and Neither classes, and
Amin, Bmin, and Cmin are the minimum log-likelihoods achieved for them during training.

Each window classification is associated with a confidence,
defined as a ratio of log-likelihoods. If a window (W) is labeled
as a head nod, the related classification confidence is:

C =
l(W | Ψ1)

l(W | Ψ1) + l(W | Ψ0) + l(W | Ψ−1)
.

Here, l(W | Ψ1), l(W | Ψ0) and l(W | Ψ−1) are the log-
likelihoods for the head nod, neither, and head shake classes.

As a head gesture might get separated into several windows
of which one or more might be misclassified, the complete
sequence of class labels is filtered to correct errors. A run
length (RL) filter with two parameters, entry (T1) and exit
(T2), operates on two classes, head gesture and non-gesture.
If the classification result is a head gesture for at least T1
consecutive windows, those windows are considered as the
start of a head gesture. A head gesture ends when the label is
“neither” for at least T2 consecutive windows. Variations on
this type of RL filter have been used in applications involving
temporal behavioral data, including gaze data for detecting
looks to objects [18], and human activity recognition [19].
Each run length of windows considered to be a head gesture
is labeled as a nod or shake based on the majority vote of the
window labels; ties are resolved using the label of the highest
confidence window. As an example, with T1 = 1 and T2 = 2, a
sequence of labels S = {0, 0, 1, 1, 0, -1, 1, 0, -1, 0, 0} would
produce output Ŝ = {0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0}.

1) Training: As in [9], the raw input vectors (velocity 2-
tuples in our case) are vector quantized using the k-means
algorithm with the number of clusters chosen to equal the
number of velocity observation symbols. After obtaining the
quantized observation sequences (O) from the training se-
quences, the Baum-Welch algorithm is used to train each
HMM with the sequences from the associated class. The
minimum training log-likelihoods for Ψ1, Ψ0 and Ψ−1 are
-94.62, -105.32 and -89.79, while the maximum training log-
likelihoods are -17.92, -15.58 and -13.56.

2) Validation: While the HMMs are trained with annotated
gesture sequences, we perform online validation, meaning that
a sliding window extracts and classifies data segments from a
recording. The window shifts by ssize, and the parallel HMM
structure processes the next window. Online validation allowed
us to evaluate the system on many kinds of non-gesture
head movements which might not have been encountered in
manually annotated “neither” sequences. We evaluated values
for Ni from 2 to 10, for Mi from 2 to 50, for wsize from 35 to

TABLE I: Classification Results for the Best Configuration

True
Prediction

Head Nod Head Shake Neither

Head Nod 36 0 0
Head Shake 0 41 1
Neither 3 7 N/A

65, for ssize from wsize−30 to wsize−10, and for T1 and T2
from 1 to 10. For optimizing the hyperparameters, a possible
objective function is the macro-averaged F1 score (harmonic
mean of the multi-class precision and multi-class recall). For
scoring conversation engagement levels, head gesture duration
may be relevant, for which the Intersection over Union (IoU)
metric is useful. We optimized based on the sum of F1 and
IoU, leading to the hyperparameter set Γ̂ = {M̂1 = 34, N̂1 = 7,
M̂0 = 10, N̂0 = 7, M̂−1 = 27, N̂−1 = 7, ŵsize = 38, ŝsize = 28,
T̂1 = 1, T̂2 = 2}. The validation results are in Table I. Here,
it is not meaningful to report the number of “neither” gestures
since it is arbitrary to say how many overlapping “neither”
windows constitute a “neither” gesture. The precision, recall
and F1 score are 88.51%, 98.72% and 93.34%, respectively.
Since the processing happens online using sliding windows,
one true head gesture sequence can be falsely detected as
multiple sequences. While calculating the evaluation metrics,
for such mistakes we label only the longest sequence as a true
positive, regarding the rest as false positives.

The IoU value is 64.80%, largely due to detection errors
rather than duration errors. For the 78 true head gestures in
our validation data, there are 10 false positives and 1 false
negative. Excluding those from the IoU and examining the
mismatches for true positives, we find the average absolute
error in start (end) time is 11 (18) samples. These offsets are
smaller than both the window size (wsize) and step size (ssize);
such errors are inevitable with a sliding window approach
as windows will not perfectly overlap with true sequence
locations.

IV. SCORING ENGAGEMENT LEVELS IN INTERVIEWS

A. Data Collection and Ground Truth

We created a job interview script which takes about 10
minutes to complete. The mock interviewer is scripted, and the
respondent is unscripted. The script includes questions about
the characteristics and experience of the interviewee, and parts
where the interviewer describes the lab and the projects on
which the interviewee might work. During these descriptions,



there are opportunities for the interviewee to nod in response,
where the interviewer provides backchannel prompts such as
“isn’t that right?” or “you know what I mean?”.

Fifteen adult subjects (9 men, 6 women) took part in the
mock interviews. Each was interviewed twice and was asked to
perform two different engagement levels. A subject enacting
high engagement might show excitement, give many easily
audible responses, and provide animated head nodding or
shaking. An interviewee enacting low engagement may be pas-
sive and perform few head gestures. We divided the script into
6 parts, resulting in 180 data recordings (15 subjects × 2 times
× 6 parts). One part provided 5 head gesture opportunities,
three contained 6 opportunities, and the remaining two parts
had 7 opportunities. These opportunities correspond to yes/no
questions as well as backchannel prompts. Even without a
specific question or prompt, the interviewee can choose to nod
along during the descriptive portions, and can deliver their own
short answers with more or less physical backchanneling.

During each interview, audio and video are recorded from an
external camera. Interview segments are scored by three raters
based on the video visuals, ignoring the answer content. Our
scoring system is: (1) Head movements are absent or nearly
absent. The subject appears either disengaged or impassive
with low responsiveness. (2) Occasional head gestures. The
subject may appear attentive but with lower than average
responsiveness. (3) Typical or average engagement level for a
two-way conversation with some head gestures. (4) Frequent
head gestures, with above average engagement. (5) Lots of
head gestures. The subject seems bouncy and enthusiastic.
Raters could give intermediate values (1.5, 2.5, etc.) when
the behavior seemed intermediate between two descriptions.

B. Scoring Model

The scoring model consists of the above HMM architecture
and filtering, together with a feature extractor and a linear
regression model that uses extracted head gesture features to
predict an engagement score. To choose features and fit the
model, we use cross-validation (CV), leaving out one subject at
a time. As a preprocessing step in each CV fold, we use min-
max normalization, normalizing both training and test data
using the maximum and minimum values of each feature in the
training set. We have 15 subjects with 12 interview segments
each. Each interview segment is scored by three raters, so a
segment has three labels. We fit the model to the data from 14
subjects which forms a training set of 504 interview segments,
and test on the 12 unique segments from the subject left out.

We consider the following features: Total number of de-
tected head gestures in a segment, Mean velocity (cm/sample)
and Mean maximum velocity (cm/sample) and Duration (s) of
the detected head gestures, Average head movement velocity
(cm/sample) in the parts that are not classified as a head
gesture. For each test segment, we compare the model output
and the ground truth (average rater score) using Mean Absolute
Error (MAE). We fit the regression model based on different
feature subsets using subject-wise CV. The most descriptive
feature on its own is the number of detected head gestures

Fig. 2 Distribution of scores given by three raters

(MAE = 0.445, standard deviation = 0.344). The best feature
pair is the number and average duration of detected head
gestures (MAE = 0.373, s.d. = 0.292), and adding the average
velocity maintains the MAE at 0.373, and slightly reduces the
s.d. to 0.287. We do not use the other candidate features as
they produce slightly worse MAE. The regression model is:

score = α · gstcount + β · gstavg.vel. +ω · gstavg.dur + η.

V. RESULTS

Fig. 2 depicts the distribution of rater scores. Raters 1 and 3
have experience working with individuals with ASD, however
raters 2 and 3 produce similar scores, which tend to be lower
than those of rater 1. The average differences between scores
given by raters 1 and 2, 1 and 3, and 2 and 3 are 0.62, 0.62
and 0.37, respectively (0.54 on average). With subject-wise
CV to fit the model, we get 15 different models, each with
a different {α, β, ω, η} set; the average values across the
CV folds are {α̂ = 2.35, β̂ = 0.87, ω̂ = 1.16, η̂ = 1.27} with
standard deviations of 0.054, 0.064, 0.080 and 0.025.

Fig. 3 presents a scatter plot of model prediction values
vs. average rater scores for each interview segment. Purple
lines delimit the area where the absolute prediction error is
below 0.5 (73.9% of points) while yellow lines correspond
to error less than 1 (97.2% of points). The mean absolute
prediction error is 0.37 (s.d. = 0.29). The maximum over and
under estimations are 1.58 and 1.14.

Fig. 4 shows the cumulative distributions of prediction
errors for different binned average rater scores (e.g., average

Fig. 3 Average rater score vs. model prediction for 180 interview segments



Fig. 4 Cumulative distribution curves of errors for each engagement level

scores between 4.25 and 4.75 go in the bin for 4.5). The plot
does not contain a line for level 5, as the average score never
exceeded 4.75. The model produces the largest errors for very
low engagement examples; this is potentially not a significant
drawback since whether a user receives a low or very low
score, they would be aware of the need to display head gestures
more frequently and enthusiastically. The model has higher
accuracy in the mid to high range, allowing users to calibrate
to a range of typical to high conversational engagement levels.

VI. CONCLUSION

Neurodivergent employees bring unique perspectives to
teams, yet hiring these employees remains a challenge due
to mismatched expectations about what constitutes engaged
social conversation appropriate for an interview setting [20].
While multiple efforts are underway to change hiring practices
to be more inclusive [20], we need better tools to help neu-
rodivergent individuals practice normative social conversation
skills. To prepare job applicants for job interviews, we built
an AR headset-based application which tracks head position,
detects head nods and shakes, and scores conversational en-
gagement in terms of physical backchannels. The number of
detected head gestures in a short interview segment, along with
gesture velocity and duration, provide enough information to
build a simple model that scores similarly to human evaluators.

While head gesture detection is widely studied, few studies
use head motion data, and most that do [6]–[10] are in
a context where the user aims to execute specific control
gestures (a type of human computer interface) rather than
moving freely in a naturalistic conversation. The context of
a mock job interview naturally affects interviewees’ head
movements, however arbitrary head movements (e.g., looking
away from the interviewer) were present in our data. The two
main contributions of this paper are therefore performing head
gesture detection with high accuracy in an online fashion while
allowing subjects to move freely, and showing that extracted
head gesture information in a simple model allows prediction
of conversational engagement that has high agreement with
human raters. For future work, an automatic rating system
integrated with a VR platform would allow for solo practice.
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