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Measuring Social Modulation of Gaze in Autism
Spectrum Condition With Virtual
Reality Interviews

Saygin Artiran

Abstract— Gaze behavior in dyadic conversations can
indicate active listening and attention. However, gaze behav-
ior that is different from the engagement expected during
neurotypical social interaction cues may be interpreted as
uninterested or inattentive, which can be problematic in
both personal and professional situations. Neurodivergent
individuals, such as those with autism spectrum conditions,
often exhibit social communication differences broadly
including via gaze behavior. This project aims to support
situational social gaze practice through a virtual reality (VR)
mock job interview practice using the HTC Vive Pro Eye VR
headset. We show how gaze behavior varies in the mock
job interview between neurodivergent and neurotypical par-
ticipants. We also investigate the social modulation of gaze
behavior based on conversational role (speaking and listen-
ing). Our three main contributions are: (i) a system for fully-
automatic analysis of social modulation of gaze behavior
using a portable VR headset with a novel realistic mock job
interview, (ii) a signal processing pipeline, which employs
Kalman filtering and spatial-temporal density-based clus-
tering techniques, that can improve the accuracy of the
headset’s built-in eye-tracker, and (iii) being the first to
investigate social modulation of gaze behavior among neu-
rotypical/divergentindividuals in the realm of immersive VR.

Index Terms— Gaze behavior, job interview practice,
signal processing, neurodivergence, virtual reality, social
modulation.
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|. INTRODUCTION

OCIAL communication skills are important aspects of

cognitive development, and technologies that support
assessment and learning of such skills are in demand. Gaze
behavior is a form of active sensing; individuals shift their
gaze 3-4 times per second both consciously and unconsciously
to gain high resolution information about aspects of a visual
scene [1], [2], [3], [4], [5]. Auditory stimuli and internal
factors related to personal experience, such as memory, have
also been shown to affect eye movements and visual percep-
tion [6], [7], [8], [9], [10]. Many researchers have analyzed
gaze behaviors of individuals who identify as neurodivergent,
and particularly with an autism spectrum condition (ASC) [11]
noting differences in gaze behavior particularly in social
settings [12], [13], [14], [15], [16], [17], [18]. Numerous
tools have been developed to support situational practice of
gaze [19], [20], [21]. Commonly used technologies involve
2D computer screens accompanied by video cameras or eye-
tracking glasses, and head mounted displays (HMDs) for
augmented and virtual reality (AR/VR). Such studies have
involved both neurotypical individuals and the neurodiverse.

Medical professionals often refer to ASC as autism spec-
trum disorder (ASD). ASD prevalence is 1 in 44 according
to the most recent Autism and Developmental Disabilities
Monitoring (ADDM) Network results monitoring 8 year olds
across 11 ADDM network sites [22]. ASD is associated with
a high rate of unemployment; studies report that 69% of
individuals with ASD want to work [23] while merely 15%
are employed [24]. Social communication deficits together
with society’s workplace communication norms and recruiting
practices may be preventing many individuals with ASD from
acquiring or retaining jobs [25], [26], [27], [28]. We are moti-
vated to develop technologies to support autistic individuals in
practicing conversational engagement skills, especially those
which relate to job interviews and workplace communica-
tions [29], [30].

In this paper, we report on a system that uses a VR
headset in the context of a virtual job interview which
involves interacting with a virtual interviewer. Computer-aided
instruction has numerous advantages from a practice point of
view. Scenarios are reproducible, controllable and individu-
alizable [31]. HMD systems evoke presence and immersion,
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and more recently, wearable tools have furnished novel ways
of measuring and understanding the impacts of virtual con-
tent on practice outcomes. The capability of these media
to replicate the exterior world allows researchers to emulate
real-world experiences, which makes this technology widely
applicable for practicing skills, including social skills such as
interpersonal communication and interview skills. In a review,
Bonaccio et al. [32] investigated nonverbal behavior in the
workplace and pinpointed many “codes” of nonverbal behav-
ior: communication via body movement, touch, voice, and
physical space. For interview-specific skills, strong influence
of nonverbal cues (e.g., gaze and body movement) on how an
interviewer perceives an interviewee’s performance was shown
in [33]. These perceptions bias the selection of new employees
which motivates our project in utilizing an objective physical
input (gaze) from HMDs to assess social appropriateness and
suitability for a professional environment.

For these assessments to be reliable, high-quality gaze-
tracking is essential. HMDs with eye-trackers commonly
require repeated eye-tracking calibration. Moreover, current
eye-tracking technologies experience drops in data quality
caused by factors such as glasses, contact lenses, eye color,
eyelashes, and mascara [34], [35]. To improve gaze analysis,
we develop a signal processing-based algorithm which boosts
the accuracy of the HTC Vive Pro Eye VR headset built-in
eye-tracker. The algorithm uses Kalman filtering to smooth out
the spurs in gaze data arising from actions such as blinking
or abrupt head movements, and applies a spatial-temporal
density-based clustering to gaze samples.

VR comes with some limitations, including nausea, dizzi-
ness, and headaches; results in [36], [37], and [38] suggested
that such side effects may present an obstacle to regular
lengthy VR use. However, no special connection between
autism and the level of such side effects has yet been
established. Although [39] reported that some participants
with low-functioning ASD were too overwhelmed to complete
the experiments, participants with ASD enjoyed VR headsets
without developing any side effects in many studies [39],
[40], [41]. In addition, methods to mitigate such side effects
have been developed, including accurate position tracking so
as not to break the sense of 3D space [42], minimal delay
between user inputs and corresponding in-game actions [43],
and avoiding sudden loud sounds and visual clutter [39].

The contributions of this work are three-fold: (1) Although
gaze behavior is widely studied, we are the first to provide
an analysis of social modulation of gaze behavior via a
portable VR headset and a realistic job interview simulation.
Because the gaze analysis is fully automated, it is suitable
for inexpensive solo practice. (2) We make an algorithmic
contribution to the task of eye-tracking using HMDs. In stud-
ies such as [44], [45], [46], and [47], researchers report
concerns about time consuming repetitive calibrations, and
eye-tracking inaccuracies due to headset slippage, blinking,
abrupt and extreme shifts in gaze, and large head move-
ments. The algorithm we developed offers a signal processing-
based solution to many of these tracking issues. (3) This
work is the first to study social modulation of gaze in the
context of immersive VR. The results provide insight, for
neurotypical (NT) and autistic individuals, of what people

most commonly look at during a job interview setting, and
how the populations differ in the impact of conversational role
on gaze.

The rest of this paper is organized as follows. Section II
summarizes related work, while Section III describes the VR
mock job interview application. In Section IV, we present
our algorithm for increasing eye-tracking accuracy. Section V
explains the demographics of our participants and the steps in
a VR mock job interview session. Section VI showcases our
gaze behavior analyses for NT and autistic participants, and
we conclude with Section VII.

Il. RELATED WORK

Section II-A summarizes studies that examine the relation
between gaze behavior and autism in dyadic conversations,
as well as research that focuses on the impact of conversational
role (listener versus speaker) on gaze, which is known as
social modulation. Section II-B reviews papers that analyze
gaze behavior in job interview settings, as well as research on
technologies and procedures for practicing gaze behavior in
social or professional settings.

A. Autism’s Impact on Gaze Behavior and Social
Modulation of Gaze

While there is a large literature on gaze behavior for
autistic individuals, we are primarily interested in studies that
involve VR or eye-tracking technologies, rather than involving
a trained professional who observes and analyzes the behavior.
In [45], [48], [49], and [50], the authors analyzed differences
in gaze behavior between NT individuals and those with
social disorders, concluding that autistic individuals or those
with high social anxiety looked at the other conversationalist
less often compared to NT participants and those with low
social anxiety. Participants were also assigned an emotion
recognition task in [45], interacting with virtual agents in a
PC-based platform. NT participants recognized emotions more
accurately, and usually in less time. Yoshikawa et al. [48]
designed a social robot that converses by playing pre-recorded
sounds in sync with its mouth. The study also included in-
person conversations with a real person. Both populations
looked at the android more and the autistic individuals looked
at the android’s eyes more often than at the person’s eyes. The
HTC Vive VR headset was used in [50].

Several papers analyzed the social modulation of gaze,
that is, changes in eye movements based on a person’s
conversational role as speaker or listener. Using in-person
conversations involving NT participants, researchers found
that listeners gazed more at the speaker than speakers looked
at listeners [46], [S1]. Twenty eight undergraduate students
participated in [46] and 13 adults took roles in [S1] (the latter
is a foundational study that used expert observation rather than
technologically-based eye-tracking).

Similar studies have included neurodivergent participants.
During in-person conversations of 13 autistic and 13 NT
adults [47], the NT participants were found to look at the
other person’s eyes more often. Similarly, the effect of con-
versational role on gaze behavior during dyadic video calls was
studied in [52] with 68 undergraduate students with varying
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autistic traits; the authors concluded that individuals with
fewer autistic traits made more eye contact with the other
party. Both studies concluded that regardless of neurodiver-
gence, people spent more time looking at the other party’s face
while listening. The authors of [47] additionally reported that
the autistic participants spent more time looking at the exper-
imenter’s mouth, and when the experimenter looked directly
at them, they tended to avert their gaze more than did NT
participants. This between-group difference was significantly
reduced when the experimenter’s gaze was averted. These
studies did not involve immersive VR.

Interpersonal distance also affects gaze behavior, but
research shows varying findings for both regular two-way
conversations and interviews. Examining gaze behavior with
interpersonal distances between interviewee and interviewer of
2.5, 6.5, and 10.5ft, Aiello [53] reported that male (female)
participants made more eye contact at 6.5ft (10.5ft). Using a
similar setup, Russo [54] found male participants made more
eye contact seated at 6ft from the other party instead of 3ft,
whereas the results were reversed for the female participants.
Furthermore, the effect of autism on interpersonal distance
tends to be inconsistent. Asada er al. [S5] investigated the
impact of eye contact on social proximity, finding that partic-
ipants maintained a larger interpersonal distance when there
was eye contact, regardless of having an ASC. In contrast,
Perry et al. [56] reported significant variations in interpersonal
distances preferred by autistic individuals.

B. Gaze Behavior in Job Interviews and Its Practice

A few studies investigated gaze behavior in interview
contexts. The authors of [44] developed a tool to enable
individuals to practice making eye contact during job inter-
views. Twelve adults took part in virtual conversations; if
their gaze fell within the virtual character’s bounds, the vir-
tual character looked interested in the participant. Otherwise,
it moved as if it were not paying attention. The participants
were expected to make eye contact to receive attention. With
both computer-mediated and face-to-face interview settings,
171 undergraduate students were asked in [57] to act as
interviewers listening to applicants. Some applicants had scar-
like facial features; an eye-tracker was used to study how these
affected interviewer gaze patterns. Tian et al. [58] employed
the FOVE headset to display a virtual room with multiple
interviewers and conducted mock interviews with 10 graduate
students. The researchers categorized the gaze data based
on the fixation location (e.g., eyes, face, neck) and scored
interviewee performance.

Wang et al. [59] designed a system that displays the exter-
nal world inside the Oculus Rift VR headset. A teacher
manually tracked participant gaze and overlaid a temporary
prompt (e.g., an apple image) on top of their own eyes to
stimulate eye contact, if needed. Although the system was
intended to remind autistic children to make eye contact, it was
tested on 4 NT college students who retained eye contact
following the visual reminders as expected.

Several researchers designed VR games to improve eye
contact, gaze sharing, and gaze following skills of children
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Fig. 1. Office space we designed for the VR-interview application. The
setup is identical between version A and B except for the interviewer.
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Fig. 2. Reference photos and corresponding virtual interviewers for
version A (left pair) and B (right pair) of the VR-interview application.

in social settings (e.g., [60], [61], [62], [63], [64], [65],
the latter two used a VR headset and the rest used a PC).
Mostly small numbers of subjects attended the studies: while
20 pairs of autistic and NT children participated in [61] and
9 pairs in [62], the other studies involved between 2 and
8 children in total. Although all six studies analyzed and
aimed to improve gaze behavior, [61] and [65] did not employ
any explicit eye-tracking. In those papers, participants played
games that involved various stages, differing in difficulty, and
gaze behavior practice proceeded based on the completion of
stages.

[1l. VR INTERVIEW APPLICATION

We designed a virtual office space in Unity, with
office objects such as a desk, computer, cabinet, and
plant (see Fig. 1). We created two virtual interviewers
(versions A and B); each version of the application shows a
single interviewer sitting across from the interviewee. The
interviewers ask questions and describe the job positions
following a pre-defined script, performing naturalistic facial
expressions and gestures. We used the Live Link Face app [66]
to record audio and facial animations performed by a person.
We transferred the recorded facial animation data to Blender,
adding them on virtual head models as key points. Using
photos of the recorded person from different perspectives,
we created facial textures. We finalized the interviewer head
models by adding animations such as head nodding and shak-
ing. We also generated head models with no facial animations
or audio, but with small head movements such as head tilts,
which would be displayed while the interviewees were talking,
so that the virtual interviewers would look engaged. Because
the system is not yet processing verbal responses from the
subject, the avatar does not yet have the capability of smiling
and nodding at moments appropriate for the subject’s speech.
However, the ongoing small head tilts and other minor position
adjustments make it appear that the avatar is paying attention.
Fig. 2 displays a reference photo for each interviewer, and



2376 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022
Observed Values After Kalman Smoothing
Forehead
5.86
5.86
5.86°
Eyes 585 585
ES84 és.s4
5.84: e
583 5.84
5.83 5.83
4, 14,04
A A
Sran) S
(@) (b) 416 65,60 68.40 68.20 68.00 67.80 6760 A% 68.60 68.40 68.20 68.00 67.80 67.60
Time (s) Time (s)
Fig. 3. (a) Facial regions: Forehead, Eyes, Mouth. (b) Example

ST-DBSCAN output. Black dots represent points deemed noise by the
algorithm. Six clusters are detected- three large (pink, light blue, darker
blue), and three small (red, light green, darker green). The small regions
differ from nearby large ones in that the gaze occurred at substantially
different points in time.

its corresponding virtual interviewer. Voice recordings were
added in Unity.

Version A represents a job interview at a research center at
UC San Diego. The 45-question script has general questions
(“Can you describe a project that you worked on and tell
me something that you learned from it?”) and more focused
ones (“Do you have any experience with project management
software, such as Jira, Asana or Trello?”, “Have you ever used
sensor technology, like eye-tracking before?”). The version B
interview, for a position at a gaming company, has 43 questions
more and less specific to the job position (“Can you think of
some ways that games can promote positive play?”, “Can you
tell me about your strengths?”).

The interviews proceed linearly, with the virtual interviewer
asking questions one by one, not referring back to previous
questions. The subjects are unscripted, and they respond as
they deem appropriate with a mixture of short yes/no answers
and much longer answers, including pauses for thinking. The
system did not record or analyze the subject’s verbal responses.
To signal that they provided their full answer to a question,
the subjects use the trigger button on a controller. If a question
is not clear, or if the subject is not able to completely hear
a question, they can press the controller’s trackpad, and the
interviewer will repeat the question. This study was approved
by the UC San Diego Institutional Review Board under IRB
Protocol 210775 (Date of approval 7/1/2021).

V. GAZE PROCESSING
A. Algorithm Design

By means of the Unity-compatible Vive SRanipal SDK,
we use the HTC Vive’s built-in eye-tracking to track our users’
eye movements in real time. As shown in Fig. 3a, we divided
the virtual interviewer’s face into three regions: forehead, eyes,
and mouth. We aim to determine the distribution of gaze over
the regions, and the connection between gaze location and
conversational role. In each time step, after obtaining the gaze
origin and direction, the system finds the virtual object hit by
the gaze ray, which we refer to as the “hit object”, as well as
the 3D location of the hit point. As the application does not
run at a fixed frames-per-second rate, it tracks the time spent in
each time step. For each time step, the system records the hit

Fig. 4. Example usage of Kalman smoothing. Original gaze data stream
on left, filtered gaze data on right.

object label, the 3D in-game hit location, and the time spent.
After each session, the total time spent looking at each facial
region is obtained by summing the corresponding durations.

We calibrate the eye-tracker following the standard steps
accessible at the SteamVR dashboard while wearing the head-
set. Some jitter in the gaze rays arises due to blinking and to
rapid large shifts in gaze; these are smoothed using Kalman
filtering on the 3D gaze location stream. Fig. 4 displays
an example of original gaze location data and the output
after Kalman smoothing. The smoothed gaze locations are
compared against the pre-defined region borders, and the hit
object labels are updated correspondingly as needed.

As a further step in correcting the labels, the filtered gaze
data goes through Spatial-Temporal Density-Based Cluster-
ing of Applications with Noise (ST-DBSCAN) [67]. This is
an unsupervised clustering method based on the DBSCAN
algorithm [68]. DBSCAN groups points that are spatially
close. The algorithm is defined by two main parameters:
€l is the maximum spatial distance for one point to be
considered as in the neighborhood of another, and minPts
is the minimum number of points required to form a cluster.
After a cluster is formed, the algorithm iteratively expands the
cluster, if possible, by going through each data point in that
cluster and adding neighboring external points. The cluster
expands until there are no more points within €1. Then, the
algorithm starts looking for the next cluster. DBSCAN does
not require a pre-defined number of clusters and determines
the number based on the parameters and spatial distribution
of the data. The algorithm produces a list of numeric labels;
points that do not fall into any cluster are considered noise
and labeled with -1.

As DBSCAN does not consider time consistency, two data
points which are spatially close may be put in the same
cluster even if there is a large temporal distance between them.
ST-DBSCAN introduces a time constraint using parameter
€2, which is the maximum temporal distance between two
points for them to be in the neighborhood of each other [67].
The algorithm starts by finding the points that are within
a temporal range €2 and a spatial distance €l of a gaze
point in the data. If the number of points that satisfy the
distance criteria is greater than min Pts, a cluster is formed.
Similar to DBSCAN’s cluster expansion, a cluster can expand
if external points exist within a temporal distance €2 and a
spatial distance €1 of a point in that cluster. ST-DBSCAN
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Hit object labels

Fig. 5. Gaze processing system overview.

might form multiple clusters within the borders of the same
hit object, which could represent looks to different parts of
the same object, different time-separated looks to the same
part of the object, or looks that involved both different times
and different object parts. A resulting ST-DBSCAN cluster is
defined by a 4D centroid c: {cy, ¢y, ¢z, ¢;} where ¢y, ¢y, c; are
the spatial coordinates of the centroid, and ¢; is the average
temporal coordinate. An ST-DBSCAN output is displayed in
Fig. 3b.

For each ST-DBSCAN cluster, the most common hit object
label for that cluster is found, and is assigned as the object
label for all gaze points in that cluster. Points labeled as
noise are dealt with separately through a relabeling step. The
number of points, and which specific points, are deemed
by ST-DBSCAN to be noise is highly dependent on the
ST-DBSCAN parameters; the noise relabeling step, as will
be seen below, enables us to achieve a labeled output stream
closer to ground truth in a data-driven way. For a given noise
point (p/), the non-noise gaze points within a temporal range
of €2 to the noise sample are examined; the unique cluster
labels of those non-noise points are stored in one set, while
their associated 4D centroids (c) are stored in another set, B.

There are studies in the literature that add time as a
component dimension, to form a spatial-temporal dimen-
sion [69], and works that use or suggest Euclidean dis-
tances involving a temporal component such as dg
V1= x2)2 4+ (1 — y2)? + (1 — )? [70], [71]. Weighted
versions of dg have also been used in clustering tasks [72].
The authors of [73] implement a distance function in the form
of a weighted sum of the space and time components for 3D
spatial-temporal data p = (x, y, 1):

di(p1, p2) ds(p1, p2) )
MaxT Max$S
where the authors define the spatial distance component as
ds(p1, p2) = v (x1 — x2)2 4+ (y1 — y2)? and the temporal dis-
tance component as d;(p1, p2) = |t} — t2]. MaxS and MaxT
are used to normalize the spatial and temporal dimensions;
these parameters might be set to the maximum obtainable
spatial and temporal distances, or can be optimized based on
data. Finally, w; is the weight for temporal distance, while the
spatial distances are weighted by 1 — w;. We use this distance
function in our noise relabeling, where we define Max S and
MaxT as the maximum Euclidean spatial distance and the
largest absolute temporal distance from a cluster centroid
(stored in B) to the noise sample. The cluster label of the
centroid that minimizes this distance function gives the hit
object label of the point that was previously labeled as noise.

3D(p1, p2) = wy + (1 — wt)

HTC Vn': (x.y.;.t): gaze Kalman (x’.y;-Z’.t_) smoot(li'l Cluster if not noise Filtered hit
Pro E.ye locations and =] TR [ gaze. ocations and = ST-DBSCAN = labels object labels
Unity timestamps timestamps 1‘
] if noise

Nearest cluster label

B. Validation and Testing

To tune our algorithm (Fig. 5) with the hyperparameter
set I' = {el, €2, minPts, w;}, we instructed 12 participants
(9 male, 3 female, split between versions A and B), to look
at objects (forehead, eyes, mouth, plant, notebook, keyboard,
monitor, cabinet, see Fig. 1). An experimenter named objects
or facial regions from the list, and the subject promptly shifted
their gaze and looked at it steadily. For ground truth, the
experimenter recorded the object label and the start/end times
of these prompted looks. The order and duration for objects
varied across participants and sessions. Each participant took
part in 5 sessions (average 287.3s), and in total we collected
4.8 hours of ground-truthed gaze data for tuning. Face region
locations and dimensions were slightly different for the two
versions because of differences in the interviewers’ heads.
Hence, for each version, we separately performed subject-
wise leave-one-out cross validation (CV), determining the
optimal hyperparameter set based on the 25 recordings from
5 individuals, and testing that set on the 5 recordings of the
participant left out. The optimal hyperparameter set in each
fold was the one that minimized the sum of forehead, eye, and
mouth region gaze percentage errors averaged over 25 training
recordings, as discussed in the following.

Suppose the subject has been given the i’ instruction to
look at something (e.g., the eye region) for a ground truth look
duration duri,t. During this time, the duration of gaze to the
eye region measured by our algorithm is dur"; Ig> which is the
sum of the time spent gazing at the object with the correct
object label after applying our gaze processing algorithm.
Then, errélg = d”’”éz — durélg > 0. The total time spent
looking at a particular region, according to the algorithm, when
the subject was not instructed to do so, constitutes the other
type of gaze duration error. The participants in this portion of
data collection were lab members who were compliant with
the instructions to the extent possible, so could be assumed to
be looking at the named items. Based on these two duration
error types, total errors are computed for each facial region; we
divide the error values by the related recording’s total duration
to produce a percentage error.

For €1, we evaluated {0.015m, 0.02m, 0.025m, 0.03m,
0.035m}. The candidate set for €2 was {0.125s, 0.25s, 0.375s,
0.5s, 0.625s, 0.75s, 0.875s, 1s}. For minPts, we considered
the integers from 1 to 40. Finally, for w;, we tested 0.25,
0.5, and 0.75. For version A, the optimal hyperparameter set
in each fold was {0.03m, 0.5s, 25, 0.5} except for one fold
for which the optimal w; was 0.75. For the 30 recordings,
the average total percentage-wise error in unprocessed gaze
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Fig. 6. Average percentage-wise facial gaze-tracking error obtained for
each version A recording (the x-axis is ordered by decreasing difference
between the error from the unprocessed data and the error our algorithm
achieves).

targeting the interviewer’s face was 11.46% (33.31s). The
duration-wise errors for forehead, eye, and mouth regions
were 8.32s (2.86%), 16.62s (5.72%), and 8.37s (2.88%),
respectively. Since the experimenter tells the subjects when
and where to look, the errors arise from calibration inaccuracy,
imprecision in Unity’s object collision method, and reaction
time between the experimenter giving an instruction and the
subject responding with a gaze shift. In young adults, this
saccadic reaction time was estimated to be 250ms [74].

This overall gaze error of 11.46% using the unprocessed
gaze data was reduced to 4.19% when the gaze data is
processed in each fold by our algorithm (see Fig. 5). The aver-
age total percentage-wise facial gaze-tracking error of 4.19%
amounts to 12.13s, of which 2.84s (0.98%), 6.27s (2.16%),
3.03s (1.05%) are forehead, eye, and mouth region errors,
respectively. Fig. 6 exhibits the average total percentage-wise
facial gaze-tracking error obtained for each recording using the
unprocessed data and the processed gaze data produced by our
algorithm tuned in the related fold. The algorithm outperforms
the accuracy of unprocessed gaze data for all recordings, so all
differences are positive. The level of improvement in gaze-
tracking error tends to vary for several reasons. Participants
were instructed to gaze at objects and facial regions for dif-
ferent durations in changing orders, and because these regions
differ in size and proximity to each other, some are easier
to detect. In addition, calibration precision could have been
different, and subject behaviors may differ among different
recordings.

We also evaluated our tuned algorithm using the Intersection
over Union (IoU) metric. The average IoU score using the
unprocessed data was 85.05%, whereas 94.37% using our
algorithm. For this metric as well, the algorithm outperforms
the accuracy of unprocessed gaze data for all recordings.
Performing the same tuning procedure for version B, the
hyperparameter set {0.025m, 0.625s, 20, 0.25} was unan-
imously selected as optimal. For version B, our algorithm
improved the overall percentage error from 8.93% (24.69s)
to 4.34% (12.08s), and the average IoU score increased from
86.20% to 93.34%. The processing yields improvement for
each recording for both metrics.
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Fig. 7. Section of an original hit object label stream (top), labels after
processing using our tuned algorithm (2nd plot), true labels (3rd plot).
The first two pie charts visualize the gaze percentages before and after
processing, and the third pie chart shows the true gaze percentages.

For the remainder of this paper, we use the hyperpara-
meter set [ = {0.03m, 0.5s, 25, 0.5} for version A, and
{0.025m, 0.625s, 20, 0.25} for version B. We tested the
pipeline on 2.5 hours of additional unseen data (3 test subjects
who completed 5 sessions for each version). For version A,
unprocessed gaze data yielded an average facial gaze-tracking
error of 7.80% (23.05s) which improved to 3.83% (11.31s)
with processing, and the average IoU improved from 88.70%
to 94.49%. The average facial region errors for version B
improved from 8.44% (24.63s) to 4.73% (13.81s) while aver-
age IoU score increased from 87.83% to 93.36%.

Fig. 7 shows an example section of the original and
processed virtual hit object label streams of the recording with
the highest improvement from the additional set, together with
the true labels in that section. The figure also shows gaze
percentages as computed originally and as adjusted by our
algorithm, as well as true gaze percentages. Some of the errors
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which get corrected are due to blinking, and some come from
calibration inaccuracy. For a relatively small region such as
the eyes, a person gazing near the boundary of the region
may, with a small calibration inaccuracy, get recorded in the
unprocessed gaze stream as having the gaze fall repeatedly
inside and outside of the region. We can see in the figure that
spikes and discontinuities in correct label flows are eliminated.
For larger and relatively isolated objects such as the drawer
or the plant, we do not observe as many inaccuracies, hence
the algorithm makes fewer corrections around those objects.

C. Specific Problems Mitigated by Processing

We conducted an experiment to investigate our algorithm’s
ability to mitigate specific eye-tracking inaccuracies due to
blinking and headset slippage. During 10 sessions (5 with
each version) of about 1 minute each, without interaction with
the virtual interviewer, timestamps were recorded at points
when the subject blinked or nudged the headset to resemble
slippage. A total of 48 blinks and 40 simulated headset
slippage examples were recorded. Each occurred while the
subject gazed fixedly at some chosen object, so ground truth
around each occurrence involves no gaze shift. Examining the
unprocessed label streams within 1 second after a blink or
headset slippage showed that the shift in the gaze ray was not
large enough to move it to a different object for 12 instances
of blinking, and 3 instances of slippage. Of the 36 blinks
associated with apparent object shifts, our tuned algorithm
corrected all but one, and it corrected all 37 occurrences of
shifts due to slippage. Fig. 8 shows the original and processed
virtual hit object label streams in one session, alongside the
true labels. Solid black (cyan) vertical lines mark the time
points where a blink (slippage) occurred. The gap between
a solid and a successive broken vertical line of same color
is 1 second. The average blink lasts about one third of a
second [75], but since gaze ray shifts do not consistently
emerge right after an event, we look over a 1 second interval.

We also designed a procedure to quantify calibration drift
and its impact on eye-tracking accuracy. Step 1: Calibrate
the headset’s eye-tracker; calibration accuracy was deemed
sufficient if the gaze ray fell on the spheres when a participant
was told to look at 5 spheres (of radius 3.25cm) placed at
the corners and center of a square of edge length 50cm.
Step 2: After achieving an acceptable calibration visually,
to measure the initial calibration accuracy, participants looked
at the front-most point on each sphere for 5 seconds. Step 3:
The experimenter prompted the participants for 3 minutes to
look steadily at different face regions and objects around the
room in a fixed order; timestamps of prompts were recorded.
Step 4: The participants interacted with the virtual interviewer
for 12 minutes, allowing potential factors of calibration drift to
arise such as headset slippage or the lenses fogging up. Step 5:
Repeat step 3 to measure post-interview eye-tracking accuracy.
Step 6: Repeat step 2 to measure post-interview calibration
drift. Three participants each completed the procedure twice,
once for each version of the mock job interview application.

Table I displays the average calibration accuracy and face
gaze-tracking error before and after the 12-minute interview
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Fig. 8. Original hit object label stream (top), labels after using tuned

algorithm (middle), true labels (bottom). Solid black/cyan vertical lines
mark blinks/headset slippages; broken lines are 1s after the preceding
solid lines.

TABLE |
AVERAGE CALIBRATION ACCURACY AND FACE REGION GAZE
TRACKING ERROR

Statisti Stage Pre-interview | Post-interview
tatistic

Calibration Accuracy (cm) 3.48 4.5
Error Before Algorithm (s) 9.47 11.95
Error After Algorithm (s) 5.8 4.66

sessions. As expected, the average calibration accuracy is
worse after the interview session, and, without using the
algorithm, the error in face gaze-tracking is also worse.
However, using our algorithm to process the gaze stream,
gaze-tracking errors before and after the interview session are
comparable, and both are significantly lower than the errors
for the unprocessed gaze stream.

In summary, this subsection provides evidence that the
improvement in object label accuracy from processing the
gaze stream arises from the algorithm’s ability to correct for
blinking, headset slippage, and calibration drift.

V. GAZE DATA COLLECTION IN THE VIRTUAL INTERVIEW

The gaze data collection described previously involved
instructions to look at objects and facial regions, to provide
a ground truth for developing the gaze processing algorithm.
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Fig. 9. Autism-Spectrum Quotient (AQ) scores reported by participants.
The broken black line marks the threshold introduced in [11]; scores
above this point to the probability of having an ASC using this self-report
questionnaire.

Following this, we turned to the main project focus, gaze in
VR job interviews. Here, subjects are not instructed to look
at anything in particular (other than for the initial calibration)
and are not aware that gaze is the focus of study.

Twenty four individuals with ASC (21 male, 3 female)
and 24 NT subjects (16 male, 8 female) participated in the
virtual interviews. Participants were assigned to the ASC
group if they had received a community ASC diagnosis.
We recruited 18 subjects who were previous participants in a
neurodiversity summer internship at UC San Diego, five cur-
rent or former trainees at the National Foundation for Autism
Research technical training program, and one person through
a San Diego-based group Autism Masterminds. Subject ages
ranged from 20 to 35 years old. At the start of a session, the
built-in eye-tracker was calibrated for each subject using the
standard HTC Vive calibration procedure, and the calibration
was verified by checking that the detected gaze coincided with
the three facial regions when the subject was prompted to
look at them. After calibration, participants began interacting
with the virtual interviewer. Half of the participants from each
population completed version A (average session length 22min
4s, s.d. = Smin 28s), and half did version B (average length
25min 54s, s.d. = 10min 25s).

After each session, we asked the participant to take the
Autism-Spectrum Quotient (AQ) test, a tool designed to quan-
titatively evaluate the expression of autism spectrum traits in
an individual, based on their subjective self-assessment [11].
Fig. 9 shows the reported AQ scores (three participants with
ASC did not disclose their scores). The mean AQ scores
reported by the NT and ASC groups are 14.21 (s.d. = 5.35)
and 25.76 (s.d. = 6.31), respectively. While one participant
with no prior diagnosis of autism scored above 25, considered
in [11] as the lower bound indicating an ASC, this subject
was retained in the NT group as they did not receive a
community diagnosis of autism and did not self-identify as
autistic. Similarly, 9 of our neurodivergent participants scored
below 25, and 3 were far from the threshold. Potential reasons
for such scores include that they may have taken the publicly-
accessible AQ survey multiple times and know how to answer
the questions, or that while they once received an autism
spectrum diagnosis, they might be unlikely to receive one
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Fig. 10. Plot on left displays the means of the percentages displayed

in Fig. 11a, 11b, and 11c, while the plot on right shows the means from
Fig. 12. Black error bars mark one standard deviation (s.d.) interval.

again based on their current communicative and interaction
behaviors [76]. Regardless, participants who had previously
received a community diagnosis of autism or autism spectrum
were maintained in that subset. The AQ score data distributions
were verified to be normal for each group and a Mann-Whitney
U test indicated a significant difference between the scores
achieved by the two groups, U = 38, p < 0.001. (Here,
38 represents the sum of the number of autistic participants
with a lower AQ score compared to each NT participant
separately. Ties contribute 0.5.)

VI. RESULTS

In this section, we compare the gaze behavior, as a function
of conversational role, of the autistic and NT participants in
our virtual job interview setting. For the tests of significance in
this section, we use one of two non-parametric tests, the Mann-
Whitney U test, which assumes that two groups are sampled
from the same type of distribution (e.g., normal, left-skewed)
and which is valid for both normally and non-normally dis-
tributed data [77], and the two-sample Kolmogorov-Smirnov
(K-S) test, which compares the cumulative distributions of
two data sets without assumptions about the distributions. For
the K-S test, the statistic D represents the maximum distance
between two cumulative distributions. We use the Shapiro-
Wilk test of normality and skewness tests to determine which
significance test to use.

The average gaze percentages across forehead, eyes, and
mouth regions while subjects listen to the virtual interviewer
speak are in Fig. 10a, which shows that the average percentage
of eye contact while listening was 35.50% (s.d. = 21.58%)
for neurodivergent participants compared to 64.04% (s.d. =
27.50%) for NT participants, whereas gaze at the mouth region
averaged 50.15% (s.d. = 19.79%) for the ASC group and
29.59% (s.d. = 25.57%) for the NT group. Fig. 11 shows
the distribution of those percentages. Although there are some
outliers, the majority of NT participants mostly made eye
contact when listening. In contrast, autistic participants had a
higher tendency to look at the interviewer’s mouth compared to
his eyes. The authors of [78] suggested that autistic individuals
might fixate more on the mouth rather than eyes since the
mouth is the source of speech and they aim to maximize their
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Fig. 11. Distributions of percentages of gaze at the three main regions of the virtual interviewer’s face (Fig. 3a) while listening.
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Fig. 12. Distributions of percentages of gaze at the three main regions of the virtual interviewer’s face (Fig. 3a) while speaking.
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Fig. 13. Distribution of (a) % of gaze at the interviewer’s face for NT subjects based on conversational role (b) % of gaze at the face for autistic
subjects based on conversational role (c) longest uninterrupted time intervals with no eye contact between the interviewees and virtual interviewer.

understanding of social situations by concentrating on a feature
they can comprehend. These observations are in alignment
with the average numbers presented in Fig. 10a. These results
that NT participants, compared with autistic participants, made
more eye contact with an interviewer are consistent with
previous results for in-person interviews, android robots, and
video calls shown in [47], [48], and [52]. So our results extend
to immersive VR the previous research that was not on VR,
while being qualitatively consistent with those earlier results.

For NT participants as listeners, we compared the percent-
age of gaze at eyes and gaze at mouth using the K-S test as
the skewness values pointed to moderate skewness in opposite
directions [79]. The difference between the two groups of gaze
percentages was deemed significant (D = 0.54, p = 0.001).
For autistic participants as listeners, the difference between
percentages of gaze at eyes and gaze at mouth was in the
opposite direction but also significant (U = 78, p = 0.02,
where the Mann-Whitney U test was used because both sets
of data satisfied normality). A final two-sample K-S test on

the difference between the eye contact percentages of the two
populations was also significant (D = 0.54, p = 0.001).

The distributions of percentages of gaze to the forehead,
eye and mouth regions while speaking are displayed in
Fig. 12, with means in Fig. 10b. While speaking, NT partic-
ipants made eye contact with the virtual interviewer 53.69%
(s.d. = 26.61%) of the time on average, whereas this number
was 30.99% (s.d. = 21.28%) for autistic participants. Both
groups came from a normal distribution, and the Mann-
Whitney U test deemed this inter-population difference sig-
nificant, U = 429, p = 0.003. The authors of [47], [48],
and [52] reported the same type of result within their respective
contexts, so our results are qualitatively consistent with them
while extending those results to immersive VR.

Fig. 13a and Fig. 13b display the distributions of gaze at
the interviewer’s face overall, when listening and speaking.
While listening, the NT group gazed at the interviewer’s face
on average 95.66% (s.d. = 4.75%) of the time, while this
value was 86.51% (s.d. = 19.74%) for the ASC group. These
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TABLE Il
LONGEST UNINTERRUPTED TIME INTERVALS WITHOUT EYE CONTACT
AVERAGED WITHIN POPULATION

Role .
Population Listener Speaker
Neurodivergent 20.19s (12.29s) | 32.13s (22.37s)
Neurotypical 13.73s (13.67s) | 20.25s (16.84s)

numbers dropped to 75.77% (s.d.= 19.64%) and 62.16%
(s.d. = 28.29%), when speaking. These drops based on con-
versational role were significant according to K-S tests (D =
0.71, p < 0.001 for the NT group and D = 0.58, p < 0.001 for
the ASC group). For both groups, individuals tend to more
frequently avert their gaze while speaking, a general finding
that comports with [46], [47], [51], and [52]. Furthermore,
regardless of conversational role, NT participants gazed at the
interviewer’s face more often than autistic participants. This
result is in agreement with [45], [49], and [50] which involved
different contexts.

We also investigated the longest uninterrupted time interval
during which interviewees did not make eye contact with the
interviewer, an aspect of gaze behavior previously unexam-
ined. Such time intervals were longer for the ASC group
(Fig. 13c¢), with average longest time of 58.49s (s.d. = 50.01s)
versus 32.04s (s.d.= 32.97s) for the NT group. The maximum
of such durations is 153.63s for the NT group, whereas it
reaches 228.39s among the ASC group. A Mann-Whitney U
test considered the difference to be significant, U = 172,
p = 0.02 (both distributions were highly right skewed).

The impact of conversational role on this measurement
is in Table II. The table presents average values for each
population, with standard deviations in parentheses. Both
groups tended to gaze away from the interviewer’s eyes more
while speaking. When gazing away from the eyes, as lis-
teners, both populations mostly fixated on the interviewer’s
mouth, whereas they mainly scanned the surrounding objects
as speakers. In agreement with the trend presented so far,
autistic participants had longer maximum times with no eye
contact for both conversational roles. The values in Table II
which examine lack of eye contact within a conversational
role are substantially shorter than the no-contact periods
mentioned above which ignore conversational role, because it
is a common pattern for no-eye-contact periods to cross role
boundaries, for example where a subject listens to a question
with eyes averted then keeps eyes averted while they formulate
and begin an answer.

VIl. CONCLUSION

Companies around the world are recognizing the benefits
that diverse teams bring to productivity and creative problem-
solving [80], [81]. Autistic people are able to focus on tasks
well, they can accomplish tasks more efficiently, and work
with honesty and dedication [82]. However, individuals with
ASC can find it challenging to obtain employment because
of social appropriateness and professionalism in an interview
setting [83]. Although there have been attempts to make job
hiring processes more inclusive and approachable [83], these
are slow to spread.

We have designed a VR-interview practice application
which provides an immersive experience for users to interact
with a human-like virtual interviewer and to answer his
questions. While it provides an opportunity to prepare for job
interviews, and to get exposed to questions that are commonly
asked in real job interviews, our system simultaneously tracks
eye movements in the background. The system accurately
measures gaze to different face regions during different con-
versational roles (speaking and listening). This allows us to
identify differences in gaze behavior of autistic and neurotyp-
ical individuals. Some of these types of measures exist in
the literature for non-VR or non-immersive-VR systems, and
our findings are consistent with those results, validating the
viability of our approach, and extending previous results to
this immersive VR setup. Other measures presented are novel.

We make three main contributions in this paper. First,
we introduce the novel portable VR system that is capable of
analyzing distinct gaze tendencies, as well as changes in gaze
behavior based on conversational role. Secondly, we design a
signal processing-based algorithm that can reduce the problem
of calibration drift of the HMD eye-trackers and potential
inaccuracies due to external factors like headset slippage
or blinking which were commonly reported in [44], [45],
[46], and [47]. Our algorithm mitigates such errors, providing
significantly more accurate gaze tracking in this conversational
context. Finally, researchers have previously used in-person
interviews or video calls to investigate social modulation of
gaze for neurotypical/diverse populations [46], [47], [51], [52],
and our work is the first to study these behaviors in the context
of immersive VR.

For future work, we aim to construct an interview practice
tool that provides automated feedback to warn users in real
time if, for example, interviewees fail to make eye contact for
a long time, and also that will provide a comparative analysis
with respect to NT gaze behavior as this is still the expectation
in most workplace settings. This will allow users to access
solo practice for job interviews by answering professional
questions. They will also get the chance to adjust their gaze
behavior, if needed, to suit society’s mismatched expectations
about what constitutes engaged social conversation appropriate
for an interview setting. The application may be useful for
neurotypical participants as well; anecdotally some partici-
pants reported that using the system made them think about
questions they had not faced previously, and that it was useful
to practice answering these questions in a real-time “think on
your feet” situation.
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