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ABSTRACT

Virtual reality (VR) systems have shown potential in analyzing hu-
man behavior across various domains. We present the design and
development of a VR-based job interview simulation tailored for
analyzing gaze and head rotation behaviors in a context with two
virtual interviewers. Our system allows users to encounter common
interview questions and quantifies how they share their attention
(gaze and head rotations) to engage with multiple interviewers based
on their conversational role (speaking or listening). We detect voice
activity to identify the start of user speech and guide the backchan-
nels (head nods or verbal cues such as “uh-huh”) given by the virtual
interviewers. We track the user’s gaze and use geometric yaw ro-
tation adjustment given the yaw and position readings of the VR
headset to find the head orientation of the user relative to the inter-
viewers in the VR environment. The system enables the exploration
of whether backchannels trigger an attention shift, or joint attention,
among other gaze and head orientation analyses. The VR application
can enable people to practice answering common interview ques-
tions while also practicing social skills of eye contact and sharing
attention among conversational partners.

Keywords: Social Behavior, Social Modulation, Job interview
Practice.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Virtual reality; User studies

1 INTRODUCTION

The immersive and interactive nature of virtual reality (VR) allow
users to engage in realistic simulated environments, providing a
unique opportunity for experiential learning. Users can learn new
skills, repeatedly practice complex tasks, and immerse themselves
in realistic simulations that resemble real-world environments.

In social sciences, VR tools that can analyze social behavior like
gaze, head rotation and gesturing can assist researchers in under-
standing communication patterns, and social dynamics. VR allows
for the practice of social skills in a controlled environment. Users
can engage in hands-on learning, making mistakes without fear of
repercussions in the real world. This lets people experience specific
interactions that might otherwise be difficult to access. In this study,
we present a novel VR-based simulation for triadic (three-way) job
interviews. Our design enables a user to interact with two virtual
interviewers in a three-way conversation and familiarize with com-
mon interview questions. The system analyzes their gaze and head
rotation behaviors, as well as how they react to the conversational
backchannels (e.g., head nods) given by the interviewers.

Individuals move their gaze in a type of active sensing or to signal
another person in social settings. Gaze characteristics may differ
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based on conversational role, which is called the social modula-
tion of gaze. When listening, individuals tend to make more eye
contact than when they are speaking [16, 36]. Head rotation and
gaze direction tend to align heavily with each other (∼70% of the
time) [31]. Given the strong connection between gaze and head rota-
tion, a similar social modulation of head orientation can be expected.
Like gaze and head rotation, backchannels, either verbal (e.g., “yes”,
“uh-huh”) or nonverbal (e.g., head nods, shakes, and tilts), are crucial
to conversations as they bridge the conversationalists.

People’s gaze behavior and head orientation tendencies and the
way they react to backchannels can provide insight into whether
they tend to perform effective joint attention and whether or not they
socially exclude conversationalists. Joint attention is defined as the
intentional coordination of an individual’s focus of attention with
that of another person, resulting in paying attention to the same item
for social reasons. This skill is especially important during the early
stages of development which reinforces later stages of development
as well [35]. An individual’s attention direction can be estimated
based on their gaze if their face is visible, and otherwise, their head
or body orientation can provide some information [28]. In the case
of multiple listeners, speakers can avoid excluding the listeners by
gazing at them or orienting towards them for a few seconds [30].
This includes acknowledging their backchannels.

Effective usage of gaze and head orientation can increase the
chances of obtaining and retaining employment. Applicants who
looked straight ahead rather than down during job interviews were
perceived to be more confident and dependable and were more likely
to be hired [2]. In other early work, researchers connected higher
perceived self-confidence and competence levels among intervie-
wees to the effective usage of nonverbal cues such as eye contact
and head orientation [12, 27]. In more recent studies, higher in-
terview scores were reported when the participants gazed more at
the interviewer, with minimal looking around [34], and employ-
ment was more likely in case of effective head orientations towards
conversational partners [14].

This study makes two main contributions: (1) Although gaze
behavior is widely studied, conversational engagement through head
rotation is not. We are the first to create a social modulation analysis
of these behaviors in a realistic mock job interview using a portable
VR headset. Since the behavior analysis is fully automated, it allows
for inexpensive solo practice. (2) While job interview practice
tools involving one virtual interviewer exist, the system presented
in this paper constitutes the first virtual job interview with two
interviewers, which allows for novel behavioral analyses such as
mirroring behavior and attention sharing.

2 RELATED WORK

2.1 Gaze Behavior Analysis
Eye tracking is widely integrated with VR head-mounted displays
(HMDs). Wang et al. [37] investigated visual attention allocation
in VR driving simulators. The authors of [11] proposed a machine
learning (ML) approach to predict visual attention in VR environ-
ments. Their work demonstrated the potential of leveraging large-
scale gaze datasets and ML algorithms for gaze analysis in VR.

Current eye-tracking technologies, especially those integrated into
HMDs, face challenges related to calibration and data quality [22,25].
Wearing glasses, contact lenses, or mascara, as well as physiological



factors such as eye color may hinder gaze tracking, potentially
necessitating repeated calibration or impacting the reliability of data.
Researchers have developed algorithms to mitigate the problems of
calibration drift, headset slippage, and blinking [5, 20, 38].

2.2 Head Orientation Analysis

Researchers have used VR headsets to investigate head movements
and their roles in perceiving and interacting with virtual scenes
[8, 23]. Xiao et al. [40] used signal processing to identify which
head motion patterns are performed by interlocutors to enact ac-
ceptance or blame in dyadic (two-person) interactions. In [4], re-
searchers devised an ML-based model to estimate conversational
engagement levels based on head gestures that were detected using
the measurements of an augmented reality (AR) headset.

VR technology for head orientation analysis has proven valu-
able in various domains, including social interactions, and training
simulations [17, 39]. Researchers have examined how individuals
naturally use head movements during social interactions in immer-
sive virtual environments [26]. These studies showed that when used
effectively, head rotations can make interlocutors feel included.

2.3 Social Behavior Analysis in Triadic Conversations

Dyadic interactions are unable to capture important behaviors such
as social exclusion. To address this, researchers have turned to
triadic conversations. Most such studies did not use VR [3, 18, 41].

In [15], head movements on their own were documented to
slightly undershoot a speaker’s position in a VR-based triadic conver-
sation setting as listeners slightly offset their horizontal head rotation
angle instead of directly facing the speaker. Using immersive VR
and measuring head/hand movements, Miller et al. [21] explored
synchrony in three-person teams. Synchrony was affected by the
context of the virtual environment and gaze behaviors. In another
effort investigating synchrony within triads, Tarr et al. [33] built a
setup where participants, represented by virtual agents, partook in a
joint movement activity with two other participants.

2.4 Behavioral Mirroring and Joint Attention

Unintentional behavioral mirroring refers to involuntarily matching
another interlocutor’s behaviors and mannerisms in a social setting.
In an early study that did not use VR [10], the authors explored
how unconscious mirroring can facilitate smooth interactions and
increase liking between individuals. Results pointed to a direct
proportion between the level of mirroring and the self-perceived
rapport. Novotny et al. [24] investigated the influence of mirroring
in interviews. After the initial interviews, the participants who paired
up with interviewers who mirrored their behaviors were more willing
to discuss further information compared to the control group (where
the interviewers deliberately avoided mirroring).

Aburumman et al. [1] examined how head gestures performed
by virtual interviewers affected the trust and liking towards them.
Head gestures that seemed to be driven by naturalistic behavior rules
led to better synchronization and a stronger sense of mutual under-
standing. Hence, having virtual interviewers that can give realistic
backchannels might result in more immersive and realistic VR-based
interview experiences. VR technologies have also enabled groups
with social communication differences such as autistic school-aged
children to practice joint attention, engage in more normative eye
contact patterns and initiate a greater number of interactions [29].

2.5 Job Interview Practice

Tools have been developed to support the practice of social and
professional skills in job interviews. Strickland et al. [32] designed
a job interview practice suite that comprised multiple approaches,
including VR simulations. In other studies, participants performed
better after VR-based job interview practices [6, 9]. Additionally,

lower anxiety and higher self-confidence levels were reported after
VR-based interview practices [6].

In summary, previous research has demonstrated the potential
of VR for studying human behavior and social interactions. VR
simulations of job interviews can let individuals tailor their social
communication skills to increase their employment chances while
reducing the potential costs of having that same practice delivered
by a human coach [7].

3 METHODS

In this section, we describe our VR-based mock job interview appli-
cation (which was based on our design in [5]), which allows users to
practice for job interviews with multiple interviewers and analyzes
users’ gaze and head rotation tendencies. We describe the simple
voice activity detection (VAD) algorithm we used and how it con-
nects to the timing of backchannels for the virtual interviewers. We
also present our geometric yaw rotation adjustment approach that
calculates a user’s head rotation angle around a predefined fixed
vertical axis based on the location of the VR headset and its rotation.

3.1 VR Job Interview
Users wore an HTC Vive Pro Eye VR headset to visualize the virtual
office space, comprising two virtual interviewers along with common
office objects (Fig. 1a). The 3D coordinates and angular velocities
(pitch, yaw, roll) of the headset in each time step are tracked using
Unity. The eye tracking uses the built-in tracker of the VR headset,
accessible through Unity using the Vive SRanipal SDK. During the
interview, at each time step, the system collects gaze origin and
direction and finds the virtual object that intersects with the gaze
ray. The system records the object label, intersection location, and
time spent in each time step which is not fixed across time steps.
The interviewers’ faces were divided into forehead, eyes, and mouth
(Fig. 1b). After each session, the total time and percentage spent
looking at each face region are obtained. Gaze data is processed
using the algorithm from [5] which improves eye tracking accuracy.

The job interview was for a video game company as video gaming
is a common interest of young adults, and because neurodivergent in-
dividuals are strongly represented in the video game industry. More
generally, the simulation is for people with a STEM background
who might seek employment in tech. The interview has 43 ques-
tions, including both general questions (“Can you tell me about your
strengths?”), and more specific ones (“Can you think of some ways
that games can promote positive play?”). The virtual interviewers
ask questions one by one, not referring back to previous questions.
The users are unscripted, responding as they wish, including pauses
for thinking. To signal that they fully answered a question, the users
use the controller’s trigger button. If needed, a question could be
repeated by pressing the controller’s trackpad.

Each interviewer asks roughly half of the questions; the assign-
ments, fixed across subjects, were determined to make the conver-
sations realistic. For example, one interviewer might ask multiple
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Figure 1: (a) Virtual office space, (b) Interviewer face regions.



questions in a row during which the other interviewer is mostly
silent, except for backchannels. Using the Live Link Face app, the
voices and facial animations of two individuals were recorded while
they read predefined job interview lines to a camera. The recorded
data was processed in Blender and added on head models as key
points. Photos of the individuals were used to create facial textures.
The head models included head nodding and shaking animations,
and small movements such as head tilts, displayed when the users
talk, so the interviewers look interested. In addition to the physical
animations, the interviewers provide verbal backchannels such as
“uh-huh” and “hmm”. An interviewer turns their head towards the
other when the other asks a question. They can also turn their head
when the other interviewer gives a backchannel while the user is
speaking. These behaviors allow the virtual interviewers to react
to each other’s behaviors in a realistic way. Other than backchan-
nels and head turns, the interviewers do not engage in non-verbal
communication such as arm movements.

3.2 Voice Activity and Backchannel Timing

Our system tracks voice activity to detect the starting point of an
interviewee’s response since we do not want, for example, an inter-
viewer to say “uh-huh” before the user has even started their answer.
At each time point, we compute the root mean squared (RMS) value
of 48,000 audio samples to quantify the average speech signal magni-
tude. We apply a threshold to a Gaussian weighted window of RMS
values to make a decision on voice activity. We have 3 parameters:
threshold tRMS, window size w, and standard deviation (s.d.) of the
Gaussian distribution σ . The algorithm detects voice activity when
the weighted average RMS in a window is greater than tRMS.

To validate and tune our VAD algorithm, we had 2 individuals
(1m/1f) wear the headset and read 3 scripts displayed in VR with
and without additional background noise. To generate background
noise, we played office sounds on YouTube. Each recording took
around 3 minutes and we annotated the time intervals where the
reader was silent for longer than 0.5s. The optimal parameter set
( ˆtRMS, ŵ, σ̂ ) = (0.07, 29, 18) maximized the sum of true positive
rate, true negative rate, and intersection over union value (94.1%,
91.3%, and 91.4%). As our application runs at about 45 time points
per second, a window of ŵ=29 corresponds to 0.64s, using 0.32s of
data from the past and from the future. Hence, when a user starts
speaking, the starting point of their speech is recognized 0.32s later.

For our application, we had to determine when the virtual inter-
viewers ought to provide a backchannel. We analyzed recordings
of 6 in-person 10-minute professional conversations involving an
interviewee and two individuals who acted as interviewers to learn
the amount of time an interviewer takes to give a verbal backchannel
(VB) or a physical backchannel (PB) after the interviewee starts re-
sponding. The setup in these recordings was identical to our virtual
setup as the actors sat across from the interviewee around an oval
table. Average durations between two consecutive VBs and PBs
were also recorded. Our findings are in Table 1 where standard devi-
ations are given in parentheses. The times the interviewers waited
until giving either backchannel type were similar. Henceforth, we
refer to the interviewer who asked the most recent question as IntQ,
and the other interviewer as IntO. On average, IntQ gives the first
backchannels at t+8.5s (s.d.=2.8s), and IntO at t+9.5s (s.d.=3.5s)
where t marks the start of the interviewee’s response. The average
time between two VBs or two PBs is roughly 9s (s.d.=2.4s) for IntQ,
and 13s (s.d.=5.5s) for IntO. The shortest interviewee response that
received a backchannel in the recordings was about 2.5s.

In our application, the virtual interviewers provide backchannels
randomly based on these timings. Based on the question, after 2.5s
of voice activity is detected that started at time t, IntQ gives an initial
backchannel at a time drawn uniformly randomly from the interval
t + 8.5±2.8s, while IntO has an interval t + 9.5±3.5s, unless the
user pushes the controller button to indicate the end of their answer

Table 1: Time to first backchannel, and backchannel spacing

Type Avg. Initial Wait Time Avg. Time In Between
IntQ IntO IntQ IntO

Verbal 9.3s (4.6s) 10.3s (3.4s) 9.7s (3.5s) 13.7s (8.6s)
Physical 8.1s (0.9s) 9s (3.6s) 8.3s (1.3s) 12.1s (2.3s)

prior to the backchannel occurrence. For IntQ, the duration between
consecutive backchannels is drawn from 9±2.4s, and from 13±5.5s
for IntO (Table 1).

With this design, we can explore the effects of interviewer
backchannels. We consider four cases: QbOl: IntQ may give
backchannels, IntO solely listens, QlOb: IntQ solely listens,
IntO may give backchannels, QbOb: both interviewers may give
backchannels, and QtOb: IntQ turns his head towards IntO when
IntO gives a backchannel, but does not give backchannels to the
user. For 5 questions that were known from [5] to have consistently
brief subject responses (less than the average initial backchannel
times in Table 1), the virtual interviewers did not give backchannels.
Ignoring these questions, the remaining 38 questions were assigned
with 10 each to the first two cases, and 9 each to the other two,
where questions with answers of different lengths were distributed
evenly across the cases. These assignments determined the virtual
interviewer behavior and were fixed across participants. We did not
consider the opposite of QtOb (QbOt) as we anticipated the users
to mostly gaze at and face IntQ, irrespective of their conversational
role, which reduces the chances of a reaction to IntO’s head turns.

3.3 Geometric Yaw Rotation Adjustment
We collect information about head movements by tracking the head-
set object’s position. The headset object is defined as a child object
of the camera rig object which determines the starting location and
orientation of the user within the application. When a child object
rotates, the rotations are computed with respect to its parent object’s
axes, given that the parent object does not rotate. In our application,
the camera rig object never moves or rotates. When we track the
headset’s position/rotation, we track position changes/rotations with
respect to the camera rig, and its axes. Then, irrespective of headset
location, a yaw angle of 0◦ corresponds to facing straight ahead.
However, a target that is placed at 45◦ with respect to the center of
the camera rig will not be at 45◦ for a shifted headset location. Since
we aim to explore the social inclusion tendencies of individuals and
analyze their head turns towards the interviewers, the targets in our
application are the interviewers.

The virtual interviewer positions in the virtual setting are deter-
mined by their 3D-center location. The distance from the center
of the camera rig to the centers of the interviewers is 1.5m. In
Fig. 1a, the right-hand side of the scene represents positive yaw an-
gles, from the perspective of someone sitting in the empty chair. The
interviewer on the left side of Fig. 1a (Int-1) is centered at -22.5◦
(spanning -22.5◦±10◦), and the other one (Int-2) at 22.5◦ (spanning
22.5◦±9◦) with respect to the z (forward) axis of the camera rig.

We aim to study orienting towards the virtual interviewers. Ray
casting is commonly used for 3D target acquisition and it could have
been useful if the interviewers were blocked by objects. However,
since there is a clear path between the user and the interviewers,
knowing the rotation and location of the headset with respect to the
fixed origin suffices to geometrically find engagement with (orienta-
tion towards) our targets.

Pitch, yaw, and roll angles describe the rotation of an object
around the horizontal, vertical, and forward axis. Orienting towards
a virtual interviewer is explained by the yaw values. Our algorithm
uses the (Hx,Hz) location of the headset with respect to the camera
rig object and the measured yaw angle α to compute the yaw rotation
β that corresponds to facing the same location from the center of
the camera rig. The relation between these quantities for one of the
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Figure 2: (a) C, H, and T represent the center of the camera rig,
headset, and target location that the user is facing. D is the projection
of T on the forward z axis of the headset. α is the yaw angle measured
by the headset. β is the output yaw angle of the algorithm. x-axis is
the horizontal motion axis in Unity, (b) Head rotation data collection
setup.

six cases given in Fig. 2a is:

tanα = |DT |/|DH|= (r · sin|β |− |Hx|)/(r · cos|β |+ |Hz|)
= r · sin(|β |− |α|) = sin|α| · |Hz|+ cos|α| · |Hx|
=> β = α − sin−1((sin|α| · |Hz|+ cos|α| · |Hx|)/r)

(1)

The remaining cases are similar. To validate this approach, 9
subjects (8m/1f) oriented their heads towards 13 virtual spheres
placed horizontally 1.5m away from the center of the camera rig. The
spheres were placed at angles between -90◦ and 90◦, in increments of
15◦ (Fig. 2b). The subjects oriented towards each sphere in a random
order as instructed by an experimenter who tracked the timestamp
and sphere corresponding to each command. Head rotation data
was collected from 9 different positions: left, center, right, back-left,
back, back-right, front-left, front, and front-right. The subjects were
seated at the center of the camera rig for the center position. The
other positions correspond to being seated half a meter away from
the center position in the given direction. All of the spheres were
targeted from each position.

For the center position, no yaw adjustments were necessary and
the mean absolute difference (MAD) between the recorded yaw
angles (α) and the ground truth values (β GT ) can be regarded as
a baseline for our algorithm. Here, β GT is the horizontal angle
with respect to the center of the camera rig at which the sphere was
located (whichever sphere the subject was instructed to face). For
the center position, MAD = (∑S

i=1 |β GT
i −αi|)/S, where S is the

number of spheres that were faced from a position. All 13 spheres
were oriented towards, but sometimes S > 13 because of potential
instruction repetitions. The center MAD averaged over all subjects
was 3◦. This small error is due to the fact that subjects cannot orient
exactly towards the spheres in this VR task.

For positions other than the center one, MAD = (∑S
i=1 |β GT

i −
βi|)/S. Table 2 presents the MAD values before and after the al-
gorithm adjusts the recorded yaw values. Based on Table 2, the
MADs between the processed yaw angles and the true values show
significant improvement for all positions. Additionally, the average
MAD achieved by our algorithm over all positions is 3◦, which is
equal to the baseline, suggesting the algorithm does not introduce
any additional error beyond the error of orienting towards a sphere.

Table 2: MAD Values Before/After Processing the Yaw Values

Case: Left Right Back-
Left Back Back-

Right
Front-
Left Front Front-

Right
Diff. Before
Algorithm (◦): 12.2 13.2 15.4 10.7 16.4 20.9 12.6 19.7

Diff. After Al-
gorithm (◦): 2.6 2.7 3.2 3.1 3.4 3 3.2 2.7

4 RESULTS

To examine our VR job interview simulation’s capabilities as a gaze
and head rotation analysis tool for triadic conversations, five indi-
viduals (4m/1f graduate students; mean age=26.6 (s.d.=2.6)) did the
simulation. On average, a session took 22 minutes. We aimed to see
how subjects divided their attention while listening and responding
to a question, using gaze and head rotation, and to investigate the
impact of backchannels given by the virtual interviewers.

4.1 Gaze and Head Rotation Results

Fig. 3 shows the social modulation of the subjects’ gaze. On aver-
age, subjects gazed at the interviewers’ faces more when they were
listening than speaking (98.3% versus 86%). This comports with the
findings in [5, 16, 19, 36]. Regardless of the conversational role, the
subjects mainly targeted the interviewers’ eyes, specifically IntQ’s
eyes. Although less than the eyes for both cases, subjects looked at
the interviewers’ mouths, mostly IntQ’s mouth, more when listening
compared to speaking. While speaking, although the main focus
was IntQ’s eyes, the amount of gaze directed towards IntO’s eyes
increased. The amount of gaze at the foreheads was negligible.

We investigated the effect of conversational role on the region
the subjects faced (Fig. 4). We defined 5 regions for the yaw angles:
IntQ/IntO: -22.5◦±10◦ or 22.5◦±9◦ based on which interviewer
asked the most recent question, Interior-Q/Interior-O: [-12.5◦, 0◦]
or [0◦, 13.5◦] based on who IntQ is, and Exterior: [-180◦, -32.5◦]
and [31.5◦, 180◦]. The subjects did not turn to the latter at all, so
Fig. 4 does not include this region and we drop it from further discus-
sion. As listeners and speakers, the subjects faced the interviewers
more than the other regions. They primarily dwelt around IntQ
when listening. As speakers, they turned to IntO more which was
also more than the amount of time they spent in Interior-Q. The
Interior-O region was consistently targeted the least.

Figure 3: Social modulation of gaze behavior based on interviewer
roles. F,E,M,Q,O denote forehead, eyes, mouth, IntQ, and IntO.

Figure 4: Social modulation of head rotation based on interviewer
roles.



We also checked if the subjects acted differently towards the
interviewers. On average, while they were responding to Int-1’s
questions, the yaw angles were negative 80% of the time. The yaw
values were positive 72% of the time for Int-2’s questions. Since this
difference is not large, we conclude that appearances and behaviors
of the interviewers did not affect subject behavior.

4.2 Effects of Backchannels

As introduced in Section 3.1, this VR application can also be used
to analyze the effects of backchannels produced by the virtual inter-
viewers. The four cases we investigated were: QbOl, QlOb, QbOb,
and QtOb, in which Q and O denote IntQ and IntO, and b, l, t indi-
cate whether or not that interviewer can give backchannels, or turns
to the other interviewer when the other gives a backchannel. The met-
ric we used for this analysis was the maximum absolute yaw angle
change triggered by each interviewer backchannel/head turn, aver-
aged over the total number of backchannels/head turns for that case,
across all 5 subjects. Overall, 69, 67, and 37 backchannels, and 50
head turns were executed for the four cases, respectively. Backchan-
nels and head turns that the interviewers perform are animations with
known durations. The average lengths of the animations for VBs,
PBs, and head turns during the five interview sessions were 3s, 6s,
and 5s, respectively. These lengths include the actual backchannel
duration plus a buffer to give users time to react.

We are interested in the maximum absolute difference between
β recorded at the beginning of a backchannel/head turn and at a
time point while that backchannel/head turn is being performed. For
the 5 questions where the interviewers did not give any backchan-
nels, the average maximum unsigned yaw change was 6.2◦. The
maximum unsigned yaw shifts on average for the four cases given
above were 11.5◦, 12.7◦, 13◦, and 23.4◦ (Fig. 5). QtOb triggered
the biggest reactions, meaning that when IntQ turns towards IntO
following a backchannel by IntO, the subjects mirrored IntQ’s head
turn to some extent, to perform joint attention. The fact that the
maximum unsigned yaw shift values were larger in the presence of
interviewer backchannels compared to the short answer cases which
had no backchannels suggests that subjects adjusted their behaviors
to interact with both interviewers when they received attention from
them in the form of conversational backchannels.

The VR-based job interview simulation successfully helped us to
identify an outlier subject behavior. For this subject, the maximum
yaw shifts for the four cases given above were 2.4◦, 2◦, 2.7◦, and
5.4◦ (all significantly smaller than the average; Fig. 5). Additionally,
this subject gazed at IntO’s face for 4.7% of the time when speak-
ing (25.4% on average among the other subjects). Excluding the
outlier subject further amplified some of our findings. Compared
to the previous 68.5%, the subjects gazed at the interviewers’ eyes
for 76.7% of the time when speaking, widening the gap between
the eye contact percentages for the two conversational roles. For
the speaking role, the percentage of gaze pointed at IntQ’s mouth

Figure 5: Maximum unsigned yaw shifts for each interviewer backchan-
nel behavior case, averaged across all subjects.

dropped from 16.2% to 4.2% (s.d. from 24% to 2.1%), shifting to
both interviewers’ eyes. Furthermore, the first three values shown
in Fig. 5 increased by around 2.5%, whereas the last one by 4.5%,
making the margin between the reaction to the last case and the rest
even more apparent. These observations show that the outlier subject
tended to hyper-focus on IntQ with little to no reaction to IntO’s
backchannels or IntQ’s head turns. They also gazed at IntQ’s mouth
considerably more than the rest of the subjects.

4.3 User Experience Survey Results

After the simulations, the subjects were asked to rate the repeata-
bility, complexity, user-friendliness, and realism of the application
using a 5-point Likert scale. The average scores (with s.d.s in paren-
theses) for the four aspects were 4.2 (1.2), 2.2 (0.9), 4.6 (0.6), and 4.3
(0.8), respectively. High repeatability, realism, and user-friendliness
scores, and low complexity scores point to the suitability of our VR
job interview simulation as a self-deliverable practice tool that can
also let them know whether they tend to hyper-focus on a conversa-
tionalist. The open-ended questions asked about what the subjects
liked the most, and what could be improved about the design of the
system and user experience. The subjects liked the realism of the
interviewers, and their behaviors not being robotic. They thought
the interviewers should be able to talk to each other or show more
emotion, and wished the headset was more comfortable, and they
could take breaks.

5 DISCUSSION AND CONCLUSION

Turning towards people and making eye contact with them can make
people feel included in a conversation. In professional settings such
as job interviews, candidates who use gaze and head movements
to optimally address all interviewers can increase their chances of
employment [14, 34]. In this study, we presented a VR-based triadic
job interview simulation that enables users to get familiar with
common interview questions while also informing themselves about
how they spread their attention through gaze and head rotations.

Some of the behaviors have been examined in prior studies on
screen-based or in-person settings [13, 16, 19, 36] or in immersive
environments [5]. However, most of the behaviors studied here
have not previously been examined in the context of VR, whether
screen-based or immersive. Specifically, we are studying attention
sharing (gaze and head rotations) in triadic conversations, in which
a subject has to divide their attention between two conversational
partners, which is not a commonly studied topic using VR.

Whether they were listeners or speakers, our participants pri-
marily faced whichever interviewer asked the most recent question,
and gazed at their eyes. These findings on social modulation were
in agreement with earlier work which was almost exclusively not
in VR [16, 19, 36] showing that our system can extend these anal-
yses to the context of immersive VR and can provide them in a
fully automated way. Our novel analysis of backchannel effects
showed that when the interviewer who asked the most recent ques-
tion turned towards the other interviewer (when that interviewer
gave a backchannel), participants also turned their head towards the
other interviewer, a kind of mirroring or joint attention behavior. The
participants reacted more mildly when the interviewers performed
backchannels together or separately, without any head turns.

The participants favored the repeatability, user-friendliness, and
realism of our design. One of the long-term goals of the system is to
allow users to practice answering common job interview questions,
while also practicing and receiving feedback on communication
skills. It can be difficult to share attention among multiple listeners,
and make them all feel addressed. This VR application would be
able to help people practice such attention-sharing skills.



6 LIMITATIONS AND FUTURE WORK

This study is limited by the relatively small number of participants,
majority of whom was male. In our future iterations, we will expand
the participant set to prevent potential behavioral biases. We also
intend to create different question sets, so that users can redo the
interviews without encountering identical questions. This would also
allow for observing how gaze and head orientation changes across
interview sessions. We will also explore user reactions to a situation
where neither interviewer gives any backchannels even when the
user speaks for an extended duration. Lastly, we intend to create a
mechanism to provide simple feedback to the users on their social
inclusion behavior, so that users who exclude an interviewer can be
made more aware and may choose to practice social inclusion.
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