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Analysis of Gaze, Head Orientation, and Joint
Attention in Autism With Triadic VR Interviews
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Abstract— Effective use of gaze and head orientation can
strengthen the sense of inclusion in multi-party interac-
tions, including job interviews. Not making significant eye
contact with the interlocutors, or not turning towards them,
may be interpreted as disinterest, which could worsen job
interview outcomes. This study aims to support the situa-
tional solo practice of gaze behavior and head orientation
using a triadic (three-way) virtual reality (VR) job interview
simulation. The system lets users encounter common inter-
view questions and see how they share attention among the
interviewers based on their conversational role (speaking
or listening). Given the yaw and position readings of the
VR headset, we use a machine learning-based approach
to analyze head orientations relative to the interviewers in
the virtual environment, and achieve low angular error in
a low complexity way. We examine the degree to which
interviewer backchannels trigger attention shifts or behav-
ioral mirroring and investigate the social modulation of
gaze and head orientation for autistic and non-autistic indi-
viduals. In both speaking and listening roles, the autistic
participants gazed at, and oriented towards the two virtual
interviewers less often, and they displayed less behavioral
mirroring (mirroring the head turn of one avatar towards
another) compared to the non-autistic participants.

Index Terms— Autism, job interview practice, machine
learning, social modulation of gaze and head orientation,
virtual reality.

I. INTRODUCTION

V IRTUAL reality (VR) has rapidly gained traction in
recent years. It is employed in numerous fields, including

games, interior design, and healthcare. The immersive and
interactive nature of VR lets users activate their senses to blend
with the environment. The sensation of becoming physically
present in a non-physical world may offer a distinct opportu-
nity for effective experiential learning. For example, users can
practice social communicative skills in a supervised setting
without fear of real-world repercussions.

Gaze can be used to perceive information from others or to
signal a variety of meanings, e.g., wishing to communicate [1].
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Conversational roles may alter gaze characteristics, which is
called the social modulation of gaze; when listening, individ-
uals make more eye contact than when speaking [2], [3], [4].
Head rotation and gaze direction tend to align about 70% of the
time [5]. Head orientation alone can also allude to the visual
center of attention in a conversation [6]. Like gaze and head
rotation, backchannels can also be used to show interest in
the conversation. Conversational backchannels can be verbal,
e.g., “uh-huh”, “hmm”, “yes”, “wow”, or nonverbal such as
head nods, shakes, and tilts.

Observations of individuals’ gaze patterns and head orien-
tations, along with their responses to backchannels can yield
valuable insights into their propensity for engagement and joint
attention. Joint attention refers to the deliberate alignment of
an individual’s focus of attention with that of another person,
resulting in both parties looking at the same subject matter.
This capacity holds special significance during early devel-
opmental stages as it facilitates children in acquiring object
names and object usage guidelines, contributing to later devel-
opmental milestones [7]. An individual’s focus of attention
can be inferred from gaze patterns when their face is visible;
head or body orientation can also provide valuable clues [8].
Both gaze and head orientation serve as critical mechanisms
for either enacting or evaluating joint attention. In situations
involving multiple listeners, speakers can prevent excluding
participants by briefly directing their gaze or orienting their
bodies towards them [9]. This includes acknowledging listener
input. Such actions are pivotal for ensuring that other parties
feel acknowledged and integrated in the conversation.

Effective use of gaze and head orientation can boost an
individual’s chances of securing and maintaining employment.
During job interviews, applicants who maintained direct eye
contact and kept their head up were generally perceived as
more confident and reliable, increasing their likelihood of
being offered the job [10]. Other early research supported
these findings, revealing a strong connection between higher
levels of perceived self-confidence and competence in inter-
viewees who effectively used nonverbal cues such as eye
contact and head orientation [11], [12], [13]. In a more
recent study, interviewees who maintained optimal eye contact
with the interviewer, without excessive gaze wandering or
staring, received higher interview scores [14]. Candidates
who demonstrated effective head orientation towards conversa-
tional partners were selected more frequently for employment
opportunities.

Autism is a multifaceted developmental condition that
influences an individual’s social interactions and information
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processing [15]. One out of every 44 children is autis-
tic [16], and autism is linked to a high unemployment rate,
as 69% of individuals with autism express a desire to work,
yet only 20% of this demographic finds gainful employ-
ment [17], [18]. Researchers have delved into contrasting
patterns of gaze behavior and head movements in non-
autistic (NA) and autistic individuals. Variations in head
movements were identified as potential early indicators of
autism [19], [20]. Autistic individuals exhibited a reduced
tendency to initiate and sustain eye contact, with less focus
on facial features [21], [22], [23], [24], [25], [26]. A study
suggested that autistic individuals might fixate on a single per-
son while neglecting others [27], or may face challenges when
attempting joint attention [28]. Differences in social commu-
nication, coupled with conventional workplace communication
norms and hiring procedures, could be hindering the employ-
ment prospects of autistic individuals [29], [30], [31], [32].

In this study, our contributions are: (1) A novel triadic
job interview system in VR that enables fully automatic
analysis of joint attention and of social modulation of gaze
and head orientation, (2) A multilayer perceptron (MLP)
regressor to adjust head rotation values based on head move-
ments to accurately detect engagement with virtual targets,
(3) A novel study of joint attention and social modulation of
head orientation for both autistic and NA participants using
immersive VR.

The rest of this paper is organized as follows. Section II
summarizes related work and Section III describes the triadic
VR mock job interview application. In Section IV, we explain
the virtual interviewers’ backchannel behaviors during the
mock job interviews, while Section V presents the system
pipeline and data processing procedures. Section VI presents
comparative social behavior analyses of our participants, and
we conclude with Section VII.

II. RELATED WORK

In this section, we review studies where VR was employed
to analyze social behaviors such as gaze, head movements,
and mirroring in a variety of environments, including triadic
(three-person) conversations. We also report on previous work
where the technology was used as a tool to enable the practice
of joint attention and social skills in job interviews.

A. Gaze Behavior Analysis
Precise surveillance of eye movements can allow VR sys-

tems to understand user gaze patterns, identify objects that
draw attention, and investigate the impact of stimuli on gaze
behavior. VR eye tracking has found applications across a
range of fields, such as gaming [33] and psychology [34].
Fathy et al. [35] built an ML architecture to forecast visual
focus in VR, showing the promise of using large-scale gaze
data to analyze gaze patterns in VR. Wang et al. [36] investi-
gated visual attention in VR driving simulators.

A few studies investigated gaze behavior in the context
of job interviews. The authors of [37] developed a tool to
practice maintaining eye contact. During the interviews, the
virtual character’s level of interest was influenced by the user’s
gaze direction. If the user gazed towards the virtual character,

it appeared interested, otherwise, it behaved as though it were
not paying attention. In [38], participants acted as interviewers
listening to job applicants in both computer-mediated and face-
to-face mock interviews; eye tracking was used to examine
how scar-like facial features influenced gaze patterns.

Contemporary eye trackers, particularly those in head-
mounted displays (HMDs), encounter difficulties with
calibration and data accuracy [39], [40]. Glasses, con-
tact lenses, mascara, and physiological aspects such as
eye color can impede gaze tracking. This may necessi-
tate repeated calibration and could reduce measurement
trustworthiness. Researchers have devised algorithms to mit-
igate issues due to calibration drift, headset movement, and
blinking [4], [41], [42].

B. Head Orientation Analysis
Head movements can communicate information on emo-

tions, intentions, and conversational engagement. Researchers
have used VR headsets to understand the role of head
movements in engaging with virtual environments [43], [44].
Xiao et al. [45] aimed to discern the head movements exe-
cuted by participants in dyadic (two-person) interactions to
acknowledge or criticize the other party. In [46], an ML
model gauged conversational engagement levels based on head
gestures detected using readings from an augmented reality
headset.

VR technology for analyzing head orientation has shown
utility across diverse fields such as spatial cognition and
training simulations [47], [48]. Researchers have studied
how people organically move their heads during social
engagements within immersive virtual settings [49]. These
studies revealed that effective head rotations can enhance
the sense of inclusion among interlocutors. Beyond gaze,
comprehending the patterns of head rotation in social con-
texts can improve the realism of simulated conversational
systems [50].

C. Social Behavior Analysis in Triadic Conversations
Although they can inform about some social communicative

behaviors, dyadic interactions have limitations in capturing
other behaviors like social exclusion. There are some stud-
ies of triadic interactions in real-world scenarios. In [51],
unequal distribution of gaze by a salesperson in triadic sales
encounters was perceived as favoritism, leading to reduced
trust from customers. Zima et al. [52] explored how speakers
use gaze to assert or relinquish their conversational turn; gaze
aversion from co-starting speakers was an effective strategy in
securing speaking opportunities. In [53], head and eye move-
ments of listeners were found to accurately indicate speaker
location, regardless of background noise level, although
head movements alone slightly undershot the speaker’s
position.

Unlike the real-world studies, VR use has been limited in
studying triadic interactions. Hladek and Seeber [54] expanded
upon [53], observing a similar undershooting behavior in
a VR-based triadic conversation scenario. Using immersive
VR, and head and hand tracking, Miller et al. [55] explored
synchrony within triads. Synchrony, which represents the
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natural time-dependence of behaviors in human interactions,
was influenced by the virtual environment, the dynamics
of turn-taking within the triad, and gaze. Tarr et al. [56]
designed an experiment in which participants, represented by
virtual agents, engaged in a collaborative movement activity
with two other participants. Participants in the synchrony
condition reported significantly higher social closeness to their
virtual co-participants compared to those in the non-synchrony
condition.

D. Behavioral Mirroring and Joint Attention
Unintentional behavioral mirroring describes the phe-

nomenon of passively and involuntarily mimicking the
postures, expressions, and mannerisms of one’s counterparts
in social settings. In an earlier non-VR study, Chartrand
and Bargh [57] examined how this unconscious mimicry can
enhance the fluidity of interactions and foster a greater sense
of liking between individuals. Their findings pointed at a
direct correlation between the degree of behavioral mirroring
and participants’ self-perceived rapport. Novotny et al. [58]
investigated mirroring in interviews. Following the initial
interviews, participants who were paired with interviewers
who engaged in mirroring showed a greater willingness to
share additional information when compared to a control group
in which interviewers intentionally refrained from mirroring.

In [59], researchers examined how head gestures exhibited
by virtual interviewers shaped trust and liking towards them.
Head gestures that appeared to follow naturalistic patterns
and that were realistically mimicked led to enhanced synchro-
nization and a stronger perception of mutual understanding.
Hence, virtual interviewers capable of providing lifelike con-
versational backchannels might enhance the immersiveness
and authenticity of VR experiences.

VR technologies have provided opportunities for groups
with social communication differences to practice joint atten-
tion. In [60], a VR-based joint attention practice module
helped autistic school-aged children improve their joint atten-
tion abilities, leading to more normative eye contact patterns
and increased initiation of interactions. Mei et al. [61] reported
that customizable virtual humans can remind participants to
focus on task-relevant areas within a VR game, improving
their task performance.

E. Job Interview Practice
Various tools have been developed to aid individuals in

practicing skills for job interviews. Strickland et al. [62]
designed a job interview practice suite that comprised multiple
approaches, including VR. Other studies have demonstrated
the effectiveness of VR-based job interview practice, with par-
ticipants gaining familiarity with common interview questions,
performing better after the practice, and reporting reduced
anxiety and increased self-confidence [63], [64], [65].

In summary, previous research has demonstrated the poten-
tial of VR for studying human behavior and social interactions.
VR simulations of job interviews can let individuals tailor
their social communication skills to increase their employment
chances while reducing the potential costs of having that same
practice delivered by a human coach [66].

Fig. 1. (a) The virtual office space. (b) Interviewer face regions:
Forehead, Eyes, Mouth.

III. VR INTERVIEW APPLICATION

A. Main Design

In our simulation, the job interview was for a video game
company as video gaming is a common interest of young
adults, and because neurodivergent individuals are strongly
represented in the video game industry [67]. Users signed
a consent form before the simulations. They wore an HTC
Vive Pro Eye VR headset to visualize the virtual office space.
It contained two virtual interviewers along with common office
objects (e.g., desk, notebooks, pens, plant, closet; Fig. 1a).
The interview consists of 43 questions, such as “What are
some skills you would like to gain while working with us?”
and “Have you previously worked with any game engines?”.
To signal that they fully answered a question, the users use
the controller’s trigger button. If needed, a question could be
repeated by pressing the trackpad. This study was approved
by the UC San Diego Institutional Review Board under IRB
Protocol 210775 (Date of approval 7/1/2021).

The virtual interviewers ask questions one by one, not
referring back to previous questions. The users respond as they
wish and can pause to think. Each interviewer asks roughly
half of the questions, with assignments fixed across users.
For increased realism, an interviewer could ask consecutive
questions or remain silent for longer durations.

We used the Live Link Face app to record the facial
animations and voices of two individuals while they read
43 predefined job interview lines to a camera. The recorded
data was processed in Blender and added on head models
as key points. Facial textures were created using photos of
the individuals. The interviewers looked engaged by means of
head nodding, shaking, and tilting animations, performed when
the users talk. In addition, the interviewers provide verbal
backchannels such as “uh-huh” and “hmm.” An interviewer
turns their head towards the other interviewer when the other
asks a question. They can also turn to the other interviewer
when he gives a backchannel during user response. Other
than backchannels and head turns, the interviewers do not
engage in nonverbal communication such as arm movements.
The interviewers’ faces were divided into forehead, eyes, and
mouth (Fig. 1b).

3D coordinates and angular velocities (pitch, yaw, roll)
of the headset are tracked using Unity. Eye tracking uses
the built-in tracker of the headset, accessible through Unity
using the Vive SRanipal SDK. At each time step, the system
collects gaze origin and direction and finds the virtual object
that collides with the related gaze ray. The system records
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the object label, intersection location, and time spent in that
time step which is not fixed across time steps. Detected
speech levels are also recorded at each time step, which is
also accessible through Unity. During each interview session,
in addition to all of the previously mentioned data, information
regarding whether the user blinked at a time step, question IDs,
and the total time and percentage spent gazing at each face
region are recorded and collected in a CSV file. These data
are not publicly accessible due to our IRB protocol.

B. Participatory Design
Autism researchers have recently started favoring participa-

tory design (PD) techniques; autistic individuals coordinating
with researchers can co-develop practical technologies that
reflect the insights of end users [68], [69]. To improve our
application, we conducted a PD session with two autistic
adults (one college educated, one not) to discuss the accept-
ability, ethics, and design of the VR job interview simulation.
Our initial design was the office environment we introduced
in [70]. Although our design partners were not distracted by
their surroundings and thought the space was realistic, they
suggested populating the desk with more objects which would
make it look more cluttered and natural. Both design partners
thought the interviewer speech was realistic and immersive,
and reported that audio was in sync with mouth movements.
They suggested adding subtitles as an option to better accom-
modate the needs of individuals with impaired hearing. They
were generally pleased with the execution and timing of the
head turns but reported that although not common, some of
them were slightly too fast. One design partner felt interrupted
by some of the verbal backchannels as they were sometimes
performed while the participant was talking. Per our design
partners’ suggestions, we put more objects on the virtual desk
and modified our design to have the interviewers only perform
physical backchannels (e.g., head nods) if the user is speaking,
and both backchannel types, otherwise.

IV. VOICE ACTIVITY AND BACKCHANNEL TIMING

Our system tracks user speech to control interviewer
backchannel behavior. The starting point of a user’s response
is important as we do not want an interviewer to give a
backchannel before the user starts speaking. Likewise, voice
activity detection (VAD) is important to prevent the interview-
ers from interrupting the users by giving out of place verbal
backchannels as pointed out during the PD session.

The system’s audio sampling rate is 48kHz. Our application
runs at around 45 time points per second, and the root mean
squared (RMS) value of the audio samples over 1 second are
computed at each time point. A Gaussian weighted window of
RMS values centered at a time point is thresholded to decide
whether there is voice activity. This approach is defined by the
threshold (tRM S), window size (w), and standard deviation of
the Gaussian distribution (σ ). To validate and tune our VAD
algorithm, we had 12 individuals wear the headset and read
aloud 3 scripts displayed in VR with and without additional
background noise (office sounds on YouTube). Each recording
took about 3 minutes; we annotated the time intervals where
the reader was silent for longer than 0.5s. In total 1,582 silence

TABLE I
TIME TO FIRST BACKCHANNEL, AND BACKCHANNEL SPACING

segments were marked (average length = 1.3s). The optimal
parameter set ( ˆtRM S , ŵ, σ̂ ) = (0.07, 29, 21) maximized the
sum of true positive rate, true negative rate, and intersection
over union value (92.8%, 89%, and 89.8%).

For our application, we had to determine when the virtual
interviewers ought to provide a backchannel. We based this
decision on timings from 6 in-person 10-minute professional
conversations involving an interviewee and two individuals
who acted as interviewers. The interviewer wait times for
verbal backchannels (VB) and physical backchannels (PB)
were similar. From here on, we call the interviewer who asked
the most recent question I nt Q, and the other interviewer
I nt O . On average, I nt Q gives the first backchannel at t+8.5s
(s.d.=2.8s), and I nt O at t+9.5s (s.d.=3.5s) where t marks
the start of the interviewee’s response. I nt Q and I nt O spend
about 9s (s.d.=2.4s) and 13s (s.d.=5.5s) between consecutive
backchannels. The shortest interviewee response that received
a backchannel was 2.5s.

The virtual interviewers randomly perform backchannels
based on these numbers from real conversations, while never
giving a VB in the presence of user speech. If 2.5s of voice
activity is detected starting at time t , I nt Q gives an initial
backchannel at a time drawn uniformly randomly from the
interval t + 8.5±2.8s, while this interval is t + 9.5±3.5s for
I nt O , as long as the user does not push the trigger button
to indicate the end of their answer prior to the backchan-
nel occurrence. For I nt Q, the duration between consecutive
backchannels is drawn from 9±2.4s, and from 13±5.5s for
I nt O (Table I).

Among the possibilities of interviewer backchannels and
head turns towards each other, we consider four cases:
QbOl: I nt Q may give backchannels, I nt O merely lis-
tens, Ql Ob: I nt Q merely listens, I nt O may give backchan-
nels, QbOb: both interviewers may give backchannels, and
Qt Ob: I nt Q turns his head towards I nt O when I nt O
gives a backchannel, but does not give backchannels to the
user. For those 5 questions that were known from [4] to
consistently have user responses shorter than the average initial
backchannel times in Table I, the virtual interviewers do not
give backchannels. The remaining 38 questions were assigned
with 10 each to the first two cases, and 9 each to the other
two, where questions with answers of different lengths were
split evenly among the cases. These assignments were fixed
across participants.

V. SYSTEM PIPELINE

The system pipeline is visualized in Fig. 2. The process
begins with a VR session in which the user’s voice activity is
tracked in real-time to determine the timing of conversational
backchannels by the avatars, and all gaze data and head motion
data is recorded. After each mock job interview session,
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Fig. 2. System pipeline, showing the VR session on the left, the data processing in the middle section, and the behavioral analysis on the right.
In the figure, α is the yaw angle measured by the headset, and Hx and Hz are x and z-positions of the headset. Note that the analysis portion also
takes as input (not shown) from the VR application the identity of IntQ/IntO and whether IntQ turned his head towards IntO at a time point or not.

the gaze data and head motion data from the headset are
processed separately. The middle portion of the diagram (non
real-time) shows the data processing, which consists of gaze
filtering (top branch, described in Section V-A) and head
motion processing (bottom branch, described in Section V-B).
Finally, the analysis portion on the right uses the sequence of
gaze object labels and head orientation angles to tabulate the
user’s engagement under different conditions (results shown
in Section VI).

A. Gaze Processing
The gaze data is processed using the algorithm from [4]

which reduces tracking inaccuracies due to factors like
blinking, headset slippage, and abrupt head movements.
As shown on the upper branch of Fig. 2, the gaze filtering
algorithm begins with Kalman smoothing to remove blinks
and jitter, then clusters the gaze locations in time and space
using ST-DBSCAN [71]. The algorithm has a final step in
which points that were initially labeled as noise (no cluster
assignment) by ST-DBSCAN get relabeled based on their
spatial-temporal distance from the clusters.

The gaze filtering algorithm is defined by four parame-
ters: maximum spatial (ϵ1) and temporal (ϵ2) distance to
form/share a cluster, minimum number of gaze points to
form a cluster (min Pts), and the weight assigned to the
temporal distance (wt ) in the spatial-temporal distance metric
used to relabel initial noise gaze points. Detailed parameter
explanations can be found in [4].

We tuned this algorithm for this new triadic conversation
version of our simulation. Following the protocol from [4],
an experimenter instructed 10 participants to look at an object
(e.g., forehead, eyes, mouth, plant, notebook, mug; Fig. 1a);
subjects promptly shifted their gaze and fixated on it. Each
participant completed 5 sessions (average 185.6s) which adds
up to 2.6 hours of annotated gaze data for tuning. Subject-wise
leave-one-out cross validation (CV) was used, so 45 recordings
from 9 individuals determined the optimal hyperparameter set
which was tested on the remaining 5 recordings. The optimal
hyperparameter set in each fold was the one that minimized
the sum of forehead, eye, and mouth region gaze percentage
errors [4] averaged over all 45 recordings.

For ϵ1, we evaluated {0.015m, 0.02m, 0.025m, 0.03m,
0.035m, 0.04m}. The candidate set for ϵ2 was {0.5s, 0.75s,
1s, 1.25s, 1.5s, 1.75s, 2s}. For min Pts, we considered the
integers from 1 to 40. Finally, for wt , we tested the numbers

from 0.1 to 0.9 in increments of 0.05. The unanimous optimal
hyperparameter set in each fold was {0.03m, 1s, 30, 0.2}.
The average total percentage-wise error in unprocessed gaze
targeting the interviewers’ faces was 6.83% (12.68s). The
duration-wise errors for forehead, eye, and mouth regions were
3.66s (1.97%), 6.01s (3.24%), and 3.01s (1.62%), respectively.
Using the tuned algorithm, the overall percentage-wise error
dropped to 1.4% (2.6s) with 0.47% (0.87s), 0.58% (1.08s),
and 0.35% (0.65s) as the individual face region errors.

B. Head Motion Processing and Machine
Learning-Based Yaw Adjustment

Shown on the lower branch of Fig. 2, we track head move-
ments by tracking the headset object’s position and orientation.
Our goal is to explore how users engage with the virtual
interviewers whose locations are known with respect to the
center C of the virtual chair (Fig. 3). Irrespective of headset
location, a yaw angle of 0◦ corresponds to facing forward.
However, a target placed 30◦ left of C will not be 30◦ left
of the headset if the headset moves. Hence, an algorithm
is needed to connect headset readings and known target
locations.

The distance from C to the interviewers is 1.5m. The
one on the right of Fig. 3 is centered at 22.5◦ (spanning
22.5◦

±9◦), and the other spans −22.5◦
±10◦ with respect to

the z (forward) axis of the virtual chair. Since the interviewers
appear as targets in the horizontal direction for a user in the
virtual chair, we are interested in yaw measurements. In [70],
we developed a geometric approach to compute the yaw β

around C that corresponds to facing the same virtual target
the user is facing from a different position (Hx , Hy, Hz) and
rotation angle α (Fig. 4a).

To validate, we instructed users to face spheres placed 1.5m
from C at angles between −90◦ and 90◦, in increments of 15◦

(Fig. 4b). An experimenter told 12 subjects to orient towards
specific spheres in a random order. This protocol was repeated
for 9 different positions: left, center, right, back-left, back,
back-right, front-left, front, and front-right. The center position
corresponds to sitting at C . The other positions correspond to
being seated half a meter away from C in the given direction.
All of the spheres were targeted from all positions.

Assuming minimal head position shifts, the center position
does not require yaw adjustment. We examine the mean abso-
lute difference (MAD) between the measured yaw angle (α)



764 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

Fig. 3. Position and orientation of the interviewers with respect to the
center of the virtual chair.

Fig. 4. (a) C, H, and T represent the center of the virtual chair, headset,
and target location that the user is facing. D is the projection of T on the
forward z axis of the headset. x-axis is the horizontal motion axis in
Unity. α is the yaw angle measured by the headset, with respect to the
forward z axis of the headset object. β is the output yaw angle of the
algorithm, (b) Head rotation data collection setup. Nine chair positions
were used during data collection, over the area spanned by the red
arrows.

and the horizontal angle with respect to C at which the
designated sphere was located (βGT ) as a baseline. For the
center position, MAD = (

∑S
i=1 |βGT

i − αi |)/S, where S
is the number of spheres that were faced from a position.
S > 13 because all 13 spheres were oriented towards and
because of repeated instructions. The center MAD averaged
over all subjects was 3◦. This small error is due to the fact
that subjects cannot orient exactly towards the spheres. For
positions other than center, MAD = (

∑S
i=1 |βGT

i − βi |)/S.
The average MAD for unprocessed yaw measurements over
all positions was 15.1◦, whereas the average MAD achieved
by our previously developed geometric approach was 3◦, equal
to the baseline.

Ray casting is commonly used for accurate 3D target
acquisition, especially when there is a clear path between
the user and the target. Precise object selection in virtual
environments is possible through head tracking-based ray
casting [72], [73]. Evaluating the head tracking-based ray
casting using the spheres yielded an average MAD of 3◦, equal
to that achieved by the lower complexity geometric approach.

Although the simple three degrees-of-freedom geometric
approach works well, it cannot account for some behaviors.
For some positions, the participants tended to tilt their heads
or rotate their shoulders, not just turn their heads, to accurately
orient towards the target sphere. The average absolute pitch
angle was 4◦, 4◦, and 4.8◦ for the positions in the back,
middle, and front rows, and the maximum pitch was 8◦

(for the sphere at 45◦ from the front-right position). This
means participants tilted their head upwards when facing
nearby spheres. The average roll angles were 2◦, 2◦, and 2.2◦

TABLE II
MAD VALUES AFTER PROCESSING THE YAW VALUES WITH

GEOMETRIC OR MLP-BASED APPROACH

for the positions in the back, middle, and front row. The largest
roll value was recorded when facing the sphere at −90◦ from
the front position (5.3◦). As an ML model can learn that
although head positions might change due to head tilts, they
still correspond to facing the same target, we developed an
MLP regressor-based yaw adjustment module. An MLP is a
fully-connected feed-forward artificial neural network with at
least three layers (at least one hidden layer) with a nonlinear
activation function.

The subjects were instructed to face a sphere for 4.4s on
average. For training and validation of the MLP model, N
random data points were sampled from each instruction. Our
MLP model is defined by 6 potential inputs from the VR
headset: yaw, pitch, roll, Hx , Hy, Hz . We used Random Forest
Recursive Feature Elimination (RF-RFE) [74] in a subject-
wise leave-one-out CV manner, using the data from 11 subjects
to train the random forest (including different configurations)
and testing it on the outstanding data. On average, the recorded
yaw value (α) was the most important feature with 92%,
followed by Hx (4%), and Hz (3%). As pitch, roll, and Hy
had average importance values less than 1%, we elected to use
(α, Hx , Hz), the same set used in the geometric approach.

Next, using the data from 12 subjects, we ran subject-wise
leave-one-out CV to train and validate the MLP, while also
optimizing N . We used adaptive learning rate. The optimal
model had 3 hidden layers with 32 nodes in each layer.
Best results were achieved for N̂=45 which corresponds to
randomly sampling 1s of data from each turn towards a sphere.
For this model, the average MAD over all positions was 2.6◦,
compared to 3◦ for the geometric approach (see Table II).
By exploiting the strong correlations between the pitch/roll
rotations and the recorded headset positions (Pearson corre-
lation |r |=0.52, p=0.045, on average), the machine learning
method is able to more accurately reflect whether the subject
is orienting towards one or another interviewer.

VI. RESULTS

In this section, we compare participants’ gaze and head ori-
entation tendencies in our triadic VR job interview simulation
as a function of conversational role and neurodivergence status,
which has not been previously attempted in the context of VR.
We make use of two non-parametric significance tests. The
Mann-Whitney U test assumes that two groups are sampled
from the same distribution (e.g., normal, right-skewed) and is
valid for both normally and non-normally distributed data [75].
The two-sample Kolmogorov-Smirnov (K-S) test evaluates the
cumulative distributions of two data sets with no assumptions
on the distributions; statistic D represents the maximum
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Fig. 5. Autism-Spectrum Quotient (AQ) scores reported by participants.
The broken black line marks the threshold introduced in [76]; scores
higher than this point to an increased chance of autism based on this
self-report questionnaire.

distance between the cumulative distributions of two groups.
To decide which test to use, we employ the Shapiro-Wilk test
of normality, accompanied by skewness tests.

Fifteen autistic (9 male, 4 female, 2 non-binary) and 15 NA
individuals (11 male, 4 female) took part in the simulations.
Participant ages ranged from 18 to 28, except for one, who
was 43. Individuals were assigned to the former group if
they had received a community autism diagnosis in the past.
The NA participants were drawn from the university grad-
uate student population with the criteria that they did not
identify as autistic and had not participated previously in this
VR mock job interview simulation. The autistic participants,
also mostly university students, were recruited through a
neurodiversity-focused technical summer internship program.
We contacted all interns from two summers for participation,
and accepted all those who chose to participate; the num-
ber of NA participants was selected to match the number
of autistic participants. Before each session, the eye-tracker
was calibrated following the headset’s default calibration
procedure. The average session length was 22.3 minutes
(s.d.=8.3 minutes).

After a session, participants were asked to complete the
Autism-Spectrum Quotient (AQ) survey, a quantitative self-
evaluation of autistic traits in an individual [76]. Fig. 5
shows the reported AQ scores (one autistic participant did
not disclose their score). The average AQ score for the
autistic participants was 29.2 (s.d.=6.6), whereas it was 16.9
(s.d.=6.7) for the NA group. The NA participants with AQ
scores higher than 25, which is the lower bound indicating
autism according to [76], were kept in the NA group as
they had not received a community autism diagnosis, nor
self-identified as autistic. Likewise, autistic individuals with
scores lower than 25 remained in the autism group. Potential
reasons for such scores include familiarity with the test and
its normative answers, or a decrease in autistic traits over time
after an initial autism diagnosis [77].

A. Gaze and Head Orientation Analysis
Fig. 6 displays the effect of conversational role on gaze

behavior. On average, both neurotypes gazed at the inter-
viewers’ faces more when they were listening to a question,
compared to when they were speaking. Higher overall gaze

percentages were recorded for the NA participants. The
NA participants looked more at interviewers’ eyes than
did autistic participants (63.9% (s.d.=18.7%) versus 40.8%
(s.d.=31.3%) while listening, and 54.2% (s.d.=26.1%) ver-
sus 23.4% (s.d.=19.9%) while speaking). For the listener
role, the eye contact percentage distributions for both groups
were normal. A Mann-Whitney U test deemed the difference
between these distributions significant, U=65, p=0.05. For
the speaker role, the eye contact percentage distributions for
the autistic and NA participants were left-skewed and normal.
A K-S test revealed the difference between these percentages
to also be significant, D=0.53, p=0.01. These results comport
with the findings of [4].

We also investigated the social modulation of head orien-
tation behavior (Fig. 7). We defined 3 yaw angle regions:
Interviewers: 22.5◦

±9◦ and -22.5◦
±10◦, Interior: [−12.5◦,

13.5◦], which represents the region in between the two inter-
viewers, and Exterior: [−180◦, −32.5◦] and [31.5◦, 180◦].
Both neurotypes mostly faced the interviewers regardless of
conversational role. However, as speakers, participants turned
more to the region between the virtual interviewers. The NA
participants oriented towards the interviewers more than the
autistic group did (86.5% versus 70.6% for listening, which
was marginally insignificant, and 76.2% (s.d.=19.8%, right-
skewed) versus 58.8% (s.d.=28.6%, left-skewed) for speaking,
which was significant, D=0.53, p=0.03), whereas the autistic
participants faced the I nterior region more (29.1% versus
15.1% for listening, which was also marginally insignif-
icant, and 41% (s.d.=28.7%, right-skewed) versus 23.7%
(s.d.=19.7%, left-skewed) for speaking, which turned out to
be significant with D=0.53, p=0.03). The participants did not
turn to the Exterior region, so we exclude it hereafter.

Our design allows for a more granular analysis based on the
identity of I nt Q, the interviewer who asked the most recent
question. We split the face regions in Fig. 6 into smaller ones,
producing regions F Q, F O , E Q, E O , M Q, and M O , where
F, E, M, Q, O denote forehead, eyes, mouth, I nt Q, and
I nt O . Fig. 8 shows that the NA participants mainly gazed at
I nt Q’s eyes regardless of their conversational role. They made
eye contact with I nt O more in the speaker role compared to
the listener role (12.4% (s.d.=10.3%, normal) versus 3.7%
(s.d.=1.5%, normal) which was significant, U=56, p=0.02).
The autistic participants looked at I nt Q’s mouth the most as
listeners. Both parties gazed at the interviewers’ faces less
when speaking (85.3% (s.d.=8.4%, normal) versus 45.2%
(s.d.=25.6%, normal) for the autistic participants which was
found to be significant, U=202, p<0.001; 93.2% (s.d.=6.3%,
right-skewed) versus 66.2% (s.d.=20.5%, normal) for the NA
participants which was significant, D=0.8, p<0.001). Overall,
the autistic participants tended to avert their eyes more from
the interviewers.

Similarly, the spatial regions in Fig. 7 can be divided
to show whether they relate to I nt Q or I nt O . The
I nterviewers region is divided into I nt Q and I nt O ,
while the I nterior region is divided into I nterior -Q and
I nterior -O representing the yaw angles from 0◦ to either
−12.5◦ or 13.5◦ based on which interviewer asked the most
recent question. Fig. 9 shows that when listening to a question,
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Fig. 6. Social modulation of gaze behavior.

Fig. 7. Social modulation of head orientation behavior.

Fig. 8. Social modulation of gaze based on interviewer roles.

the participants mostly dwelt around I nt Q. As listeners, both
groups mainly faced I nt Q, and they faced the region between
him and the 0◦ line more than I nt O . As speakers, both groups
oriented towards I nt O more than they did when they were lis-
tening; however, this increase was statistically insignificant for
the autism group (5.2% (s.d.=5.6%) versus 3.4% (s.d.=3.3%))
compared to the NA group’s significant attention shift (12.2%
(s.d.=11.3%, left-skewed) versus 3.7% (s.d.=1.8%, normal),
D=0.6, p=0.009).

We also measured individuals’ levels of social exclusion
while responding to a question. Since it is natural to look
at a person (I nt Q) when they ask one a question, here we
examine exclusion based on whether I nt O is also attended
to during the response. We looked at the longest duration
without interacting (gaze or head turn) with I nt O while
answering a question, averaged over all questions and over
all participants. For the autistic participants, this number was
17.4s (s.d.=7.5s), and for the NA participants, it was 13.2s
(s.d.=5.2s), and the distributions are in Fig. 10. There is
substantial overlap between the two groups. It is apparent that
a few participants, both autistic and NA, tend to exclude the
interviewer who did not ask the question for 25-30 seconds
at a time, while primarily attending to the interviewer that
asked the question. This suggests that this VR tool might be
useful for solo situational practice by both autistic and NA

Fig. 9. Social modulation of head orientation based on interviewer
roles.

Fig. 10. Distribution of average longest social exclusion durations
during a response.

individuals, who could practice answering questions while also
bestowing attention on both interviewers.

B. Effects of Interviewer Backchannels and Head Turns
As introduced in Section IV, this VR simulation setup

can also be used to explore the influence that backchannel
cues and head turns performed by the virtual interviewers
have on participant behavior. We investigated 4 cases: QbOl,
Ql Ob, QbOb, and Qt Ob, where Q and O denote I nt Q
and I nt O , and b, l, t indicate whether an interviewer can give
backchannels, listens only and gives no backchannels, or turns
to the other interviewer when the other gives a backchannel.
We measured the maximum unsigned yaw angle changes that
emerged as a reaction to interviewer backchannels or head
turns, averaged over the total number of backchannels or
head turns for each case. In total, for QbOl, Ql Ob, and
QbOb, 305, 313, and 184 backchannels were given, and for
Qt Ob, 242 head turns were performed. These backchannels
and head turns (hereafter, interviewer cue) that the interviewers
perform are animations with known durations. Including an
extra 1 second to give users time to react, the average lengths
of the animations for VBs, PBs, and head turns during the
mock interviews were 3s, 6s, and 5s, respectively.

We are interested in the largest head turn performed by
the participant due to an interviewer cue. This metric can
be described as the maximum unsigned difference between
the yaw angle (β) recorded at the start of an interviewer
cue and during the cue, including the extra reaction time.
For the 5 questions where the interviewers did not give any
backchannels, the average maximum absolute yaw change
was 9.8◦ (s.d.=8.9◦) for the autistic participants, and 10.4◦

(s.d.=7.4◦) for the NA participants. For the other 38 questions,
for the autistic/NA participants, the largest head turns on
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Fig. 11. Maximum unsigned yaw shifts for each interviewer cue type,
averaged across all participants.

average for the 4 cases were 9.5◦/12.9◦ (s.d.=5.7◦/7.9◦),
7.5◦/15.8◦ (s.d.=4.9◦/9.1◦), 9.2◦/16.9◦ (s.d.=5◦/11.9◦), and
8.9◦/17.9◦ (s.d.=5.3◦/9.3◦) (Fig. 11).

The NA participants reacted to Qt Ob the most; when I nt Q
turns towards I nt O following a backchannel by I nt O , the NA
participants tend to mirror I nt Q’s behavior. This joint atten-
tion pattern was less prominent for the autistic participants
which is consistent with a previous study involving in-person
conversations [28]. For the NA participants, the maximum
unsigned yaw shift values were larger in the presence of
interviewer backchannels compared to the short answer cases
which had no backchannels, which could be due to the inter-
viewer backchannels, whereas autistic individuals turned their
heads slightly less on average for the 4 backchannel cases,
compared to the short answer cases without backchannels.
Across the 4 cases, autistic individuals behaved similarly
regardless of interviewer cues. Mann-Whitney U tests found
that the average maximum yaw shifts were significantly differ-
ent for the two participant groups for Ql Ob and Qt Ob, with
U=55, p=0.01, and U=53, p=0.008, respectively. Therefore,
the two neurotypes tended to differ the most when I nt Q did
not give backchannels but rather stayed idle or acknowledged
I nt O’s backchannels.

C. User Experience
Upon completing the VR simulation, participants were

asked about the repeatability, complexity, user-friendliness,
and realism of the application. Table III presents the results.
They were asked to respond with their level of agreement
on a 5-point Likert scale from 1 = “Not realistic at all”
to 5 = “Acceptably realistic” for the last 3 items in Table III,
and from 1 = “Strongly Disagree” to 5 = “Strongly Agree”
for all the other items. High repeatability, realism, and user-
friendliness, and low complexity scores verify the suitability of
our triadic self-deliverable VR mock job interview simulation
which can let users practice for job interviews. Open-ended
questions in the survey asked about what the participants liked
the most, and what design components could be improved. The
participants enjoyed being able to practice for a job interview
in a low stakes environment and with human-like interviewers.
They found some interviewer head turns a bit fast and abrupt,
and suggested having more background noise. Some wished
the headset were more comfortable, and suggested the app
should facilitate taking a break. Overall, 25 participants out

TABLE III
SUMMARY OF REPEATABILITY, COMPLEXITY, USER-

FRIENDLINESS, AND REALISM SCORES

of 30 reported that they would use the application for solo job
interview practice.

VII. CONCLUSION

In professional settings such as job interviews, applicants
who use gaze and head orientation effectively can improve
their likelihood of employment [14]. In this study, we pre-
sented a triadic VR mock job interview that lets users
familiarize themselves with popular interview questions while
getting informed about their attention distribution and social
exclusion tendencies. Our participants favored the repeatabil-
ity, user-friendliness, and realism of our design.

Using a machine learning architecture to accurately detect
head turns towards the virtual interviewers, and a signal
processing-based algorithm that can mitigate the common
problems with eye tracking in VR [4], we showed that
regardless of their conversational role or their neurotype, our
participants primarily interacted with the interviewer who
posed the most recent question. As listeners, the autistic par-
ticipants gazed at the interviewers’ mouths more than at their
eyes, and more than the NA individuals gazed at the mouths.
This was also reported in [4] on dyadic VR conversations,
which shows that the autistic participants followed similar gaze
trends in triadic cases.

We have findings that are novel in the realm of immer-
sive VR; NA participants engaged with the interviewer who
did not pose the most recent question significantly more when
speaking compared to listening, whereas the autistic partici-
pants did not. We also discovered differences in joint attention
tendencies; NA participants tend to mirror an interviewer’s
behavior in turning to the other interviewer, whereas autistic
participants do this significantly less. These behaviors have not
been previously addressed using VR. Also, a few participants
of both neurotypes tended to exclude the interviewer who did
not ask the most recent question, suggesting that this system
might be useful in the general population to practice interview
and engagement skills.
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Although our system can provide a useful solo practice
opportunity for job interviews, it has some limitations, includ-
ing the relatively small number of participants, and that the
AQ scores of the two participant groups show significant over-
lap, likely because the groups were based only on community
diagnosis and self identification as autistic or not. We also
have some limitations in the design of the VR application,
in particular that some avatar head turns were too fast, and
users were not able to go back to a previous question (useful
if a user accidentally skips a question).

In future work, we intend to expand our participant set.
We will design multiple question sets so that the users can
encounter a more diverse set of questions, and can use the
application more than once. We plan to address the feedback
we received. We will add captions to make our design more
inclusive for people with hearing disabilities, and will redesign
some head turn animations to make them more natural.
We also aim to create an interview practice tool that offers
automated feedback, such as alerting users in case of social
exclusion.
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